ABSTRACT: This study aimed to investigate the molecular mechanism responsible for primary open-angle glaucoma (POAG) progression. We analyzed microRNAs (miRNAs) expression profiling in aqueous humor (AH) of both POAG patients and normal controls, using a microarray-based approach. Subsequently, differentially expressed miRNAs (DEmiRNAs) were identified using Bayes moderated t-test. Next, DEmiRNAs target genes were predicted based on miRNA databases, followed by GO analysis and pathway analysis using DAVID. Furthermore, OAG-related genes analysis for target genes was carried out using CTD database, respectively. Finally, verification of DEmiRNAs expression levels was performed by RT-qPCR. A total of 40 significant DEmiRNAs were identified between control and POAG groups, including 24 up-regulated miRNAs and 16 down-regulated miRNAs. Further, the target genes of hsa-miR-206, including BMP2, SMAD4, ID2, and TNF, were mainly enriched in transforming growth factor-β (TGF-β) signaling pathway. While, target genes of hsa-miR-184, hsa-miR-34c-5p, hsa-miR-7-2-3p and hsa-miR-20b-3p, including BCL2, EPHB2, VEGFA, COL4A1, APC, and TGFBR1, were enriched in eye development. Moreover, FNDC3B, CAV2 and VEGF, target genes of hsa-miR-206 or hsa-miR-34c-5p, were the OAG-related genes. Ultimately, RT-qPCR analysis confirmed that mRNA levels of hsa-miR-206, hsa-miR-7-2-3p, and hsa-miR-20b-3p were increased, while those of hsa-miR-184 and hsa-miR-34c-5p were decreased in POAG compared with normal groups (P < 0.05). Hsa-miR-206, hsa-miR-184, hsa-miR-34c-5p, hsa-miR-7-2-3p and hsa-miR-20b-3p might play a significant role in the pathogenesis of POAG and hsa-miR-206 might be associated with the development of POAG by regulating TGF-β signaling pathway. These results might provide insight toward a better understanding of the pathogenesis of POAG.