Genome-wide profiling of BRM chromatin remodeler in Arabidopsis thaliana
Ontology highlight
ABSTRACT: Chromatin, in addition to its purely structural functions, is considered a major regulatory system coordinating various genetic networks in eukaryotes. Constant changes of gene expression programs are especially important for plants, which have to respond to environment by modulating their growth and development during whole lifetime. External and developmental signals can be transmitted through signaling cascades to chromatin remodeling complexes like SWI/SNF, which alter chromatin structure by moving, ejecting or restructuring nucleosomes. Genetic studies in Arabidopsis thaliana revealed that SWI/SNF chromatin remodeling complexes are critical for proper plant development and growth. Especially, BRM, a catalytic subunit of the complex, was shown to directly regulate several genes with important functions in leaf development, flowering initiation, as well as gibberellin and abscisic acid signaling. In this study, we profiled BRM global binding regions in Arabidopsis genome by ChIP-chip analysis. We found that BRM can bind to thousands of genes, many of which have key functions in hormone and stress signaling.
ORGANISM(S): Arabidopsis thaliana
PROVIDER: GSE71656 | GEO | 2016/12/20
SECONDARY ACCESSION(S): PRJNA291752
REPOSITORIES: GEO
ACCESS DATA