Project description:Investigation of whole genome gene expression level changes in a Vibrio cholerae O395N1 delta-nqrA-F mutant, compared to the wild-type strain. Total RNA recovered from wild-type cultures of VIbrio cholerae O395N1 and its nqrA-F mutant strain. Each chip measures the expression level of 3,835 genes from Vibrio cholerae O1 biovar eltor str. N16961 with twenty average probes/gene, with five-fold technical redundancy.
Project description:Investigation of whole genome gene expression level changes in a Vibrio cholerae O395N1 delta-nqrA-F mutant, compared to the wild-type strain.
Project description:This study is an analysis of changes in gene expression during stringent response in Vibrio cholerae. V. cholerae cells in mid-log were treated with serine hydroxamate and gene expression was compared to untreated cells. Keywords: Stress response, stringent response
Project description:Temperature is a crucial environmental signal that govers the occurrence of Vibrio cholerae and cholera outbreaks. To understand how temperature impacts the transcriptome of V. cholerae we performed whole-genome level transcriptional profiling using custom microarrays on cells grown at human body temperature (37 C) then shifted to temperatures V. cholerae experience in the environment (15 C and 25 C).
Project description:Environmental isolates of Vibrio cholerae from California coastal water compared to reference strain N16961. A genotyping experiment design type classifies an individual or group of individuals on the basis of alleles, haplotypes, SNP's. Keywords: genotyping_design; array CGH
Project description:Using transcriptomics, we studied the transcriptional response of Vibrio cholerae to 10 min of exogenously supplied peptidoglycan at 300 µg/mL.
Project description:Understanding gene expression by bacteria during the actual course of human infection may provide important insights into microbial pathogenesis. In this study, we evaluated the transcriptional profile of Vibrio cholerae, the causative agent of cholera, in clinical specimens from cholera patients. We collected samples of human stool and vomitus that were positive by dark-field microscopy for abundant vibrios and used a microarray to compare gene expression in organisms recovered directly from the early and late stages of human infection. Our results reveal that V. cholerae gene expression within the human host environment differs from patterns defined in in vitro models of pathogenesis. tcpA, the major subunit of the essential V. cholerae colonization factor, was significantly more highly expressed in early compared with late infection; however, the genes encoding cholera toxin were not highly expressed in either phase of human infection. Furthermore, expression of the virulence regulators, toxRS and tcpPH, was uncoupled. Interestingly, the pattern of gene expression indicates that the human upper intestine may be a uniquely suitable environment for the transfer of genetic elements that are important in the evolution of pathogenic strains of V. cholerae. These findings provide a more detailed assessment of the transcriptome of V. cholerae in the human host than previous studies of organisms in stool alone and have implications for cholera control and the design of improved vaccines. Keywords: comparative gene expression analysis
Project description:Question Addressed: What is the level of expression of genes in Vibrio cholerae recovered from various conditions. These conditions include samples recovered directly from patients (O139 from stool samples from ICDDR,B and N16961 from stool samples from a vaccine trial held in Cincinnati) as well as standard logarithmic and stationary phase grown bacteria. Labeling reactions were performed in duplicate for each stool derived and in quadruplicate for each in vitro grown strain. A common reference was used for each slide, it was composed of RNA from the exponentially growing 92A1552 V. cholerae strain