Loss of Tifab, a del(5q) MDS gene, alters hematopoiesis through derepression of Toll-like receptor/TRAF6 signaling
Ontology highlight
ABSTRACT: TRAF-interacting protein with forkhead-associated domain B (TIFAB) is a haploinsufficient gene in del(5q) Myelodysplastic syndrome (MDS). Hematopoietic-specific deletion of Tifab results in progressive bone marrow (BM) and blood defects, including skewed hematopoietic stem/progenitor cells (HSPC) proportions, altered myeloid differentiation, and progressive cytopenia. A subset of mice transplanted with Tifab knockout (KO) hematopoietic cells develop a bone marrow failure (BMF)-like disease with neutrophil dysplasia and cytopenia. In competitive transplants, Tifab KO HSPC are out-competed by wild-type (WT) cells, suggesting a cell-intrinsic HSPC defect. Gene expression analysis of Tifab KO HSPC identified dysregulation of immune-related signatures, and hypersensitivity to Toll-like receptor 4 (TLR4) stimulation. TIFAB also forms a complex with TRAF6, a mediator of immune signaling, and reduces TRAF6 protein stability by a lysosome-dependent mechanism. In contrast, TIFAB loss increases TRAF6 protein and the dynamic range of TLR4 signaling in HSPC, contributing to ineffective hematopoiesis. Moreover, combined deletion of TIFAB and miR-146a, two genes associated with del(5q) MDS/AML, results in a cooperative increase in TRAF6 expression and hematopoietic dysfunction in vivo. Re-expression of TIFAB in human del(5q) leukemic cells results in attenuated TLR4 signaling and reduced cell viability. These findings underscore the importance of efficient regulation of innate immune/TRAF6 signaling within HSPC by TIFAB, and its cooperation with miR-146a as it relates to the pathogenesis of hematopoietic malignancies, such as del(5q) MDS/AML.
ORGANISM(S): Mus musculus
PROVIDER: GSE72936 | GEO | 2015/09/12
SECONDARY ACCESSION(S): PRJNA295373
REPOSITORIES: GEO
ACCESS DATA