Genomic analysis of COP9 signalosome function in Drosophila melanogaster
Ontology highlight
ABSTRACT: The COP9 signalosome (CSN), an eight-subunit protein complex, is conserved in all higher eukaryotes. CSN intersects the ubiquitin-proteasome pathway, modulating signaling pathways controlling various aspects of development. We are using Drosophila as a model system to elucidate the function of this important complex. Transcriptome data was generated for four csn mutants, sampled at three developmental time points. Our results are highly reproducible, being confirmed using two different experimental setups that entail different microarrays and different controls. Our results indicate that the CSN acts as a transcriptional repressor during Drosophila development, resulting in achronic gene expression in the csn mutants. "Time shift" analysis with the publicly-available Drosophila transcriptome data indicates that genes repressed by the CSN are normally induced primarily during late embyogenesis, or during metamorphosis. These temporal shifts are likely due to the roles of the CSN in regulating transcription factors. A null mutation in CSN subunit 4, and hypomorphic mutations in csn5 lead to more severe defects than seen in the csn5null mutants strain, suggesting that CSN5 carries only some of the CSN function. Keywords: time course csn mutants
ORGANISM(S): Drosophila melanogaster
PROVIDER: GSE7303 | GEO | 2007/04/12
SECONDARY ACCESSION(S): PRJNA98073
REPOSITORIES: GEO
ACCESS DATA