Transcriptomics

Dataset Information

0

A protein phosphatase network controls the temporal and spatial dynamics of differentiation commitment in human epidermis


ABSTRACT: Epidermal homeostasis depends on a balance between stem cell renewal and terminal differentiation. The transition between the two cell states, termed commitment, is poorly understood. Here we characterise commitment by integrating transcriptomic and proteomic data from disaggregated primary human keratinocytes held in suspension to induce differentiation. Cell detachment induces several protein phosphatases, five of which - DUSP6, PPTC7, PTPN1, PTPN13 and PPP3CA – promote differentiation by negatively regulating ERK MAPK and positively regulating AP1 transcription factors. Conversely, DUSP10 expression antagonises commitment. The phosphatases form a dynamic network of transient positive and negative interactions that change over time, with DUSP6 predominating at commitment. Boolean network modelling identifies a mandatory switch between two stable states (stem and differentiated) via an unstable (committed) state. Phosphatase expression is also spatially regulated in vivo and in vitro. We conclude that an auto-regulatory phosphatase network maintains epidermal homeostasis by controlling the onset and duration of commitment.

ORGANISM(S): Homo sapiens

PROVIDER: GSE73147 | GEO | 2017/10/17

SECONDARY ACCESSION(S): PRJNA296097

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2017-10-18 | PXD003281 | Pride
2021-11-02 | PXD029014 | Pride
2014-06-30 | E-GEOD-51999 | biostudies-arrayexpress
2014-06-30 | GSE51999 | GEO
2022-07-13 | GSE195978 | GEO
2013-08-09 | E-GEOD-40368 | biostudies-arrayexpress
2013-08-09 | GSE40368 | GEO
2014-05-12 | E-GEOD-49449 | biostudies-arrayexpress
2023-09-04 | GSE216881 | GEO
2018-09-23 | GSE116842 | GEO