Transcriptomics

Dataset Information

0

Transcriptional regulation by Set1 H3K4 methyltransferase and Jhd2 H3K4 demethylase


ABSTRACT: Histone H3K4 methylation is connected to gene transcription from yeast to humans, but its mechanistic role in transcription and chromatin dynamics remains poorly understood. Here, we investigated the functions for Set1 and Jhd2, the sole H3K4 methyltransferase and H3K4 demethylase, respectively, in S. cerevisiae. Our data show that Set1 and Jhd2 predominantly co-regulate transcription. To further understand the role for H3K4 methylation, we overexpressed Flag epitope-tagged SET1-G990E (a dominant hyperactive allele of SET1) in yeast using the constitutive ADH1 promoter (ADH1p). As a control, we also overexpressed Flag epitope-tagged wild type SET1 in yeast. Analysis of gene expression in set1-null, jhd2-null and wild type SET1 or hypeactive SET1-G990E overexpressing mutants together revealed that the transcriptional regulation at a sub-set of genes, inclduing those governing glycogen metabolism and ribosome biogenesis, is highly sensitive to any change (i.e., loss or gain) in H3K4 methylation levels. Overall, we find combined activities of Set1 and Jhd2 via dynamic modulation of H3K4 methylation contribute to positive or negative transcriptional regulation at shared target genes.

ORGANISM(S): Saccharomyces cerevisiae

PROVIDER: GSE73406 | GEO | 2016/06/15

SECONDARY ACCESSION(S): PRJNA296903

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2016-06-15 | E-GEOD-73406 | biostudies-arrayexpress
2016-06-15 | E-GEOD-73404 | biostudies-arrayexpress
2016-06-15 | E-GEOD-81021 | biostudies-arrayexpress
2016-06-15 | E-GEOD-81022 | biostudies-arrayexpress
2016-06-15 | GSE73404 | GEO
2016-06-15 | GSE81022 | GEO
2016-06-15 | GSE81021 | GEO
2016-06-15 | GSE81020 | GEO
| PRJNA296896 | ENA
2024-04-23 | GSE180992 | GEO