Genome-wide MAF1-dependent regulation of RNA polymerase III transcription [DamIP-Seq]
Ontology highlight
ABSTRACT: In higher eukaryotes, an important mechanism to tune translation in different tissues and conditions is mTORC1-dependent regulation of tRNAs transcription by RNA polymerase III (Pol III), as the relative amount of tRNAs tightly coordinates with the translational needs of the cell. mTORC1 contributes to regulate protein synthesis through its direct substrate MAF1, which functions as a negative regulator of Pol III transcription in response to stimuli such as serum starvation or rapamycin treatment. Here, we applied ChIP-seq to examine the Pol III occupancy profile in human fibroblasts and report evidence of a genome wide, MAF1-dependent coordinated response to favorable or stress growth conditions. Strikingly, while a set of genes is extremely responsive in terms of Pol III binding, other genes are mostly unperturbed, yet associated with transcriptionally engaged polymerases as revealed by nascent EU-labeled RNA-seq (neuRNA-seq). As shown by DamIP-seq, the responsiveness of a subset of genes is tightly connected to the rapid and transient interaction of MAF1 with DNA-bound Pol III.
ORGANISM(S): Homo sapiens
PROVIDER: GSE73928 | GEO | 2016/02/15
SECONDARY ACCESSION(S): PRJNA298535
REPOSITORIES: GEO
ACCESS DATA