Transcriptional profiling of TH2 cells identifies pathogenic features associated with asthma
Ontology highlight
ABSTRACT: Allergic asthma and rhinitis are two common chronic allergic diseases that affect the lungs and nose, respectively. Both diseases share clinical and pathological features characteristic of excessive allergen-induced type 2 inflammation, orchestrated by memory CD4+ T cells that produce type 2 cytokines (TH2 cells). However, a large majority of subjects with allergic rhinitis do not develop asthma, suggesting divergence in disease mechanisms. Since TH2 cells play a pathogenic role in both these diseases and are also present in healthy non-allergic subjects, we performed global transcriptional profiling to determine whether there are qualitative differences in TH2 cells from subjects with allergic asthma, rhinitis and healthy controls. TH2 cells from asthmatic subjects expressed higher levels of several genes that promote their survival as well as alter their metabolic pathways to favor persistence at sites of allergic inflammation. In addition, genes that enhanced TH2 polarization and TH2 cytokine production were also upregulated in asthma. Several genes that oppose T cell activation were downregulated in asthma, suggesting enhanced activation potential of TH2 cells from asthmatic subjects. Many novel genes with poorly defined functions were also differentially expressed in asthma. Thus, our transcriptomic analysis of circulating TH2 cells has identified several molecules that are likely to confer pathogenic features to TH2 cells that are either unique or common to both asthma and rhinitis.
Project description:Background: In asthma, airway epithelium remodeling can already be detected during childhood, and epithelial cells are more susceptible to virus and oxidative stress. Their exact role in natural history and severity of children allergic respiratory disease remains however surprisingly unexplored. Aim: To analyze dysfunctions of epithelium in dust mite allergic respiratory disease (rhinitis ± asthma) in children. Methods: Expression profilings of nasal epithelial cells collected by brushing were performed on Affymetrix Hugene 1.0 ST arrays. All allergic patients were sensitized to dust mite. 19 patients had an isolated allergic rhinitis (AR). 14 patients had AR associated with asthma. Patients were compared to 12 controls, their severity and control being assessed according to NAEPP and ARIA criteria. Infections by respiratory viruses were excluded by real-time PCR measurements. Results: 61 probes were able to distinguish allergic rhinitis children from healthy controls. A majority of these probes was under the control of Th2 cytokines, as evidenced by parallel experiments performed on primary cultures of nasal epithelial cells. In uncontrolled asthmatic patients, we observed not only an enhanced expression of these Th2-responsive transcripts, but also a down-regulation of interferon-responsive genes. Conclusion: Our study identifies a Th2 driven epithelial phenotype common to all dust mite allergic children. Besides, it suggests that epithelium is involved in the severity of the disease. Expression profiles observed in uncontrolled asthmatic patients suggest that severity of asthma is linked at the same time to atopy and to impaired viral response. Nasal epithelium gene expression profiling of dust mite allergic children with isolated rhinitis, rhinitis associated with asthma and controls. 38 samples classified in 4 categories : 14 isolated rhinitis (R), 6 rhinitis with uncontrolled asthma (UA), 7 rhinitis with controlled asthma (CA) and 11 healthy subjects (C )
Project description:Background: In asthma, airway epithelium remodeling can already be detected during childhood, and epithelial cells are more susceptible to virus and oxidative stress. Their exact role in natural history and severity of children allergic respiratory disease remains however surprisingly unexplored. Aim: To analyze dysfunctions of epithelium in dust mite allergic respiratory disease (rhinitis ± asthma) in children. Methods: Expression profilings of nasal epithelial cells collected by brushing were performed on Affymetrix Hugene 1.0 ST arrays. All allergic patients were sensitized to dust mite. 19 patients had an isolated allergic rhinitis (AR). 14 patients had AR associated with asthma. Patients were compared to 12 controls, their severity and control being assessed according to NAEPP and ARIA criteria. Infections by respiratory viruses were excluded by real-time PCR measurements. Results: 61 probes were able to distinguish allergic rhinitis children from healthy controls. A majority of these probes was under the control of Th2 cytokines, as evidenced by parallel experiments performed on primary cultures of nasal epithelial cells. In uncontrolled asthmatic patients, we observed not only an enhanced expression of these Th2-responsive transcripts, but also a down-regulation of interferon-responsive genes. Conclusion: Our study identifies a Th2 driven epithelial phenotype common to all dust mite allergic children. Besides, it suggests that epithelium is involved in the severity of the disease. Expression profiles observed in uncontrolled asthmatic patients suggest that severity of asthma is linked at the same time to atopy and to impaired viral response. Nasal epithelium gene expression profiling of dust mite allergic children with isolated rhinitis, rhinitis associated with asthma and controls.
Project description:Background: In asthma, airway epithelium remodeling can already be detected during childhood, and epithelial cells are more susceptible to virus and oxidative stress. Their exact role in natural history and severity of children allergic respiratory disease remains however surprisingly unexplored. Aim: To analyze dysfunctions of epithelium in dust mite allergic respiratory disease (rhinitis ± asthma) in children. Methods: Expression profilings of nasal epithelial cells collected by brushing were performed on Affymetrix Hugene 1.0 ST arrays. All allergic patients were sensitized to dust mite. 19 patients had an isolated allergic rhinitis (AR). 14 patients had AR associated with asthma. Patients were compared to 12 controls, their severity and control being assessed according to NAEPP and ARIA criteria. Infections by respiratory viruses were excluded by real-time PCR measurements. Results: 61 probes were able to distinguish allergic rhinitis children from healthy controls. A majority of these probes was under the control of Th2 cytokines, as evidenced by parallel experiments performed on primary cultures of nasal epithelial cells. In uncontrolled asthmatic patients, we observed not only an enhanced expression of these Th2-responsive transcripts, but also a down-regulation of interferon-responsive genes. Conclusion: Our study identifies a Th2 driven epithelial phenotype common to all dust mite allergic children. Besides, it suggests that epithelium is involved in the severity of the disease. Expression profiles observed in uncontrolled asthmatic patients suggest that severity of asthma is linked at the same time to atopy and to impaired viral response. Differentiated HNECs gene expression profiling in context of Th2 and IFN cytokine stimulation Each condition was performed in triplicates: total of 21 samples
Project description:Background: In asthma, airway epithelium remodeling can already be detected during childhood, and epithelial cells are more susceptible to virus and oxidative stress. Their exact role in natural history and severity of children allergic respiratory disease remains however surprisingly unexplored. Aim: To analyze dysfunctions of epithelium in dust mite allergic respiratory disease (rhinitis ± asthma) in children. Methods: Expression profilings of nasal epithelial cells collected by brushing were performed on Affymetrix Hugene 1.0 ST arrays. All allergic patients were sensitized to dust mite. 19 patients had an isolated allergic rhinitis (AR). 14 patients had AR associated with asthma. Patients were compared to 12 controls, their severity and control being assessed according to NAEPP and ARIA criteria. Infections by respiratory viruses were excluded by real-time PCR measurements. Results: 61 probes were able to distinguish allergic rhinitis children from healthy controls. A majority of these probes was under the control of Th2 cytokines, as evidenced by parallel experiments performed on primary cultures of nasal epithelial cells. In uncontrolled asthmatic patients, we observed not only an enhanced expression of these Th2-responsive transcripts, but also a down-regulation of interferon-responsive genes. Conclusion: Our study identifies a Th2 driven epithelial phenotype common to all dust mite allergic children. Besides, it suggests that epithelium is involved in the severity of the disease. Expression profiles observed in uncontrolled asthmatic patients suggest that severity of asthma is linked at the same time to atopy and to impaired viral response. Differentiated HNECs gene expression profiling in context of Th2 and IFN cytokine stimulation
Project description:The link between upper and lower airways in patients with both asthma and allergic rhinitis is still poorly understood. As the biological complexity of these disorders can be captured by gene expression profiling we hypothesized that the clinical expression of rhinitis and/or asthma is related to differential gene expression between upper and lower airways epithelium. We used micro array to profile gene expression of primary nasal and bronchial epithelial cells from the same individuals and examining the impact of allergic rhinitis with and without concomitant allergic asthma on expression profiles. 17 subjects were included in a cross-sectional study (6 allergic asthma and allergic rhinitis; 5 allergic rhinitis; 6 healthy controls). RNA was extracted from isolated and cultured epithelial cells from bronchial brushes and nasal biopsies, and analyzed by microarray (Affymetrix U133+ PM Genechip Array).
Project description:The implication of alveolar macrophages (AM) in asthma, a Th2 disease, has not been well characterized. Thus, the goal of this study is to better characterize AM phenotype of allergic asthmatic compared with normal subjects using genomic expression analyses. Microarray analyses were performed with AM isolated from bronchoalveolar lavage. Robust multiarray analysis (RMA) normalization and Smythâs moderated t test were used to select differentially expressed genes. Fifty differentially expressed genes were identified. Nineteen have been classified in categories linked to stress or immune responses and among them; nine are part of the heat shock protein (HSP) family. Difference of expression for three (HSPD1, PRNP, SERPINH1) of the five selected genes were validated using real-time reverse transcriptionâpolymerase chain reaction. Enzyme linked immunosorbent assay was used to measure the protein level of heat shock protein 60 (HSP60), the protein encoded by HSPD1, and showed difference in AM protein level between allergic asthmatic and control subjects. In summary, this study suggests that HSP gene family, particularly HSP60, is involved in AM functions in a context of allergic asthma. These results also support the involvement of AM immune functions in the development of an allergic asthmatic response. Ten alveolar macrophage samples from bronchoalveolar lavages have been studied. Five of them are from allergic asthmatic subjects and five from control subjects (without allergy and asthma).
Project description:Polyfunctional Th2 cells play a crucial role in triggering diverse pathogenic responses in allergic diseases by producing multiple cytokines. However, the precise mechanism underlying their polyfunctionality remains elusive. In this study, we elucidate the pivotal role of Nrf2 in polyfunctional Th2 cells during allergic asthma. We found that an increase in reactive oxygen species (ROS) in immune cells infiltrating the lungs is necessary for the development of eosinophilic asthma. Deletion of the ROS sensor Nrf2 specifically in T cells, but not in dendritic cells, significantly abolished eosinophilia and polyfunctional Th2 cells in the airway. Mechanistically, Nrf2 intrinsic to T cells is essential for inducing optimal oxidative phosphorylation and glycolysis capacity, thereby driving Th2 cell polyfunctionality, partially by inducing PPARγ, independently of IL-33. Treatment with an Nrf2 inhibitor leads to a substantial decrease in polyfunctional Th2 cells and subsequent eosinophilia in mice, and a reduction in the production of Th2 cytokines from peripheral blood mononuclear cells (PBMCs) in asthmatic patients. These findings highlight the critical role of Nrf2 as a spatial and temporal metabolic hub that is essential for polyfunctional Th2 cells, suggesting potential therapeutic implications for allergic diseases.
Project description:Rhinovirus infections are the most common cause of asthma exacerbations. The complex responses by the airway epithelium to rhinovirus can be captured by gene expression profiling. We hypothesized that the upper and lower airway epithelium exhibit differential responses to double-stranded RNA (dsRNA), and that this is modulated by the presence of asthma and allergic rhinitis. Identification of dsRNA-induced gene expression profiles by microarray of primary nasal and bronchial epithelial cells from the same individuals and examining the impact of allergic rhinitis with and without concomitant allergic asthma on expression profiles. 17 subjects were included in a cross-sectional study (6 allergic asthma and allergic rhinitis; 5 allergic rhinitis; 6 healthy controls). RNA was extracted from isolated and cultured epithelial cells that were stimulated with Poly(I:C) for 24 hours from bronchial brushes and nasal biopsies, and analyzed by microarray (Affymetrix U133+ PM Genechip Array).
Project description:Background: A specific subset of regulatory IL-10 producing B cells has been extensively studied in autoimmune and inflammatory pathologies. These cells are able to constrain exacerbated inflammation by inhibiting T cell mediated responses and maturation of antigen presenting cells. In allergic diseases, observations that increase of regulatory B cells is necessary for allergen tolerance suggest that development of allergic asthma would be associated with a defect in the regulatory B cells compartment. Objective: We sought to (i) characterize regulatory IL-10+ regulatory B cell subset in Balb/c mice by microarray and flow cytometry and (ii) investigate their regulatory capacity in vivo in a house dust mite model of allergic asthma. Results: We identified an IL-10 producing B cells subset able to control T cell proliferation in vitro in both control and asthmatic mice. This subset is decreased in allergic mice. IL-10+ Breg cells express high levels of CD9 and upregulate CD70 and CD73 after activation. Expression of CD9 allows identifying more than 50% of Bregs. Interestingly CD9+ B cells inhibit TH2-TH17 allergic airway inflammation in vivo after adoptive transfer in an IL-10 dependent manner. Conclusions: Herein, we demonstrate that induction of allergic asthma dampens the generation of Bregs contributing to exacerbated airway inflammation. We identified a distinct CD9+ Breg-cell population decreased in lung of HDM mice and able to control asthma and allergic airway inflammation by producing IL-10 after adoptive transfer. This study points B cells as an interesting therapeutic target in allergic asthma. IL-10+ B cells (n=3) and 3 IL-10- B cells (n=3) in control mice + IL-10+ B cells (n=3) and 3 IL-10- B cells (n=3) from asthmatic allergic (HDM) mice