Project description:MicroRNAs (miRNAs) are involved in nearly every biological process examined to date. Mounting evidence show that some spermatozoa specific miRNAs play important roles in the regulation of spermatogenesis and germ cells development, but little is known of the exact identity and function of miRNA in sperm cells or their potential involvement in spermatogenesis and germ cells development. Here, we investigated the spermatozoa miRNA profiles using illumina deep sequencing combined with bioinformatic analysis using zebrafish as a model system. Deep sequencing of small RNAs yielded 12 million raw reads from zebrafish spermatozoa. Analysis showed that the noncoding RNA of the spermatozoa included tRNA, rRNA, snRNA, snoRNA and miRNA. By mapping to the zebrafish genome, we identified 400 novel and 204 conserved miRNAs which could be grouped into 104 families, including zebrafish specific families, such as mir-731, mir-724, mir-725, mir-729 and mir-2185. We report the first characterization of the miRNAs profiling in zebrafish spermatozoa. The obtained spermatozoa miRNAs profiling will serve as valuable resources to systematically study spermatogenesis in fish and vertebrate.
Project description:We reported RNA profiles of mice spermatozoa, a total of 35,288,825 reads matching 33,039 transcripts, including 27,310 coding transcripts, were obtained.
Project description:MicroRNAs (miRNAs) are involved in nearly every biological process examined to date. Mounting evidence show that some spermatozoa specific miRNAs play important roles in the regulation of spermatogenesis and germ cells development, but little is known of the exact identity and function of miRNA in sperm cells or their potential involvement in spermatogenesis and germ cells development. Here, we investigated the spermatozoa miRNA profiles using illumina deep sequencing combined with bioinformatic analysis using zebrafish as a model system. Deep sequencing of small RNAs yielded 12 million raw reads from zebrafish spermatozoa. Analysis showed that the noncoding RNA of the spermatozoa included tRNA, rRNA, snRNA, snoRNA and miRNA. By mapping to the zebrafish genome, we identified 400 novel and 204 conserved miRNAs which could be grouped into 104 families, including zebrafish specific families, such as mir-731, mir-724, mir-725, mir-729 and mir-2185. We report the first characterization of the miRNAs profiling in zebrafish spermatozoa. The obtained spermatozoa miRNAs profiling will serve as valuable resources to systematically study spermatogenesis in fish and vertebrate. Examination of small RNA populations in zebrafish spermatozoa
Project description:We reported RNA profiles of mice spermatozoa, a total of 35,288,825 reads matching 33,039 transcripts, including 27,310 coding transcripts, were obtained. RNA profiles of the spermatozoa of 9-10 weeks adult mice were sequenced by RNA-seq,using Illumina GAIIx.
Project description:A study utilizing next-generation sequencing provided a comprehensive expression profile of murine spermatozoa, revealing the transcriptional landscape of mature sperm isolated from the corpus and cauda epididymides of C57BL/6 mice. By analyzing RNA content, we identified a distinct set of retained transcripts, including those encoding sperm-specific ion channels, as well as transcripts associated with sperm motility, capacitation, and the acrosome reaction. In addition to spermatozoa, the study also reported the transcriptional profiling of murine leukocytes, providing comparative insights into cell-type-specific gene expression. This study advances our understanding of sperm transcriptomics and its implications for male fertility
Project description:Proteins play an important role in many reproductive functions such as sperm maturation and physiology, sperm transit in the female genital tract or sperm-oocyte interaction. However, little information concerning reproductive features is available in the case of aquatic animals. The present study aims to characterize the proteome of both spermatozoa and seminal plasma of bottlenose dolphins (Tursiops truncatus) as a model organism for cetaceans. Ejaculate samples were obtained voluntarily from two trained dolphins housed in an aquarium. Spermatozoa and seminal plasma were analyzed by means of proteomic analyses using a LC-MS/MS and a list with the gene symbols corresponding to each protein was submitted to DAVID database. A total of 423 and 307 proteins were identified in spermatozoa and seminal plasma, respectively, and the samples shared 111 proteins. Furthermore, 70 proteins were identified as involved in reproductive processes, 39 in spermatozoa, and 31 in seminal plasma. The top-5 most abundant proteins were also identified in these samples: AKAP3, ODF2, TUBB, GST3, ROPN1 for spermatozoa and CST11, LTF, ALB, HSP90B1, PIGR for seminal plasma. In conclusion, this proteomic study provides the first characterization of proteomic expression patterns in cetacean sperm and seminal plasma, opening a window to future research on the discovery of biomarkers, analysis of conservation capacity or additional applications in the field of assisted reproduction technologies.
Project description:Our objective was to determine whether oxidative damage of rhesus macaque sperm induced by reactive oxygen species (ROS) in vitro would affect embryo development following intracytoplasmic sperm injection (ICSI) of metaphase II (MII) oocytes. Fresh rhesus macaque spermatozoa were treated with ROS as follows: 1 mM xanthine and 0.1 U/ml xanthine oxidase (XXO) at 37°C and 5% CO? in air for 2.25 h. Sperm were then assessed for motility, viability, and lipid peroxidation. Motile ROS-treated and control sperm were used for ICSI of MII oocytes. Embryo culture was evaluated for 3 days for development to the eight-cell stage. Embryos were fixed and stained for signs of cytoplasmic and nuclear abnormalities. Gene expression was analyzed by RNA-Seq in two-cell embryos from control and treated groups. Exposure of sperm to XXO resulted in increased lipid peroxidation and decreased sperm motility. ICSI of MII oocytes with motile sperm induced similar rates of fertilization and cleavage between treatments. Development to four- and eight-cell stage was significantly lower for embryos generated with ROS-treated sperm than for controls. All embryos produced from ROS-treated sperm demonstrated permanent embryonic arrest and varying degrees of degeneration and nuclear fragmentation, changes that are suggestive of prolonged senescence or apoptotic cell death. RNA-Seq analysis of two-cell embryos showed changes in transcript abundance resulting from sperm treatment with ROS. Differentially expressed genes were enriched for processes associated with cytoskeletal organization, cell adhesion, and protein phosphorylation. ROS-induced damage to sperm adversely affects embryo development by contributing to mitotic arrest after ICSI of MII rhesus oocytes. Changes in transcript abundance in embryos destined for mitotic arrest is evident at the two-cell stage of development.