Combinatorial Control of RBP-jk and EBF1 Chromosome Occupancy induced by viral co-activator EBNA2 [expression array]
Ontology highlight
ABSTRACT: Gene expression programs depend on sequence-specific DNA binding transcription factors, but the mechanisms that control the selective binding of these factors in a chromosomal and genomic context remain enigmatic. Here, we show that two master regulators of B-cell fate, namely EBF1 and RBP-jk, show variable genome-wide chromosome distribution in two related B-lymphocyte lines carrying different forms of Epstein-Barr Virus (EBV) latency. The latency-type specific EBV-encoded EBNA2 colocalized with RBP-jk and EBF1 at induced binding sites. Colocalization of EBF1, RBP-jk, and EBNA2 correlated with transcriptional activation. Conditional expression or repression of EBNA2 lead to a rapid alteration in RBP-jk and EBF1 binding. Biochemical and shRNA depletion studies provide evidence for cooperative assembly at co-occupied sites. These findings reveal that non-DNA binding cofactors can facilitate combinatorial interactions to induce new patterns of transcription factor occupancy and gene programming
Project description:Gene expression programs depend on sequence-specific DNA binding transcription factors, but the mechanisms that control the selective binding of these factors in a chromosomal and genomic context remain enigmatic. Here, we show that two master regulators of B-cell fate, namely EBF1 and RBP-jk, show variable genome-wide chromosome distribution in two related B-lymphocyte lines carrying different forms of Epstein-Barr Virus (EBV) latency. The latency-type specific EBV-encoded EBNA2 colocalized with RBP-jk and EBF1 at induced binding sites. Colocalization of EBF1, RBP-jk, and EBNA2 correlated with transcriptional activation. Conditional expression or repression of EBNA2 lead to a rapid alteration in RBP-jk and EBF1 binding. Biochemical and shRNA depletion studies provide evidence for cooperative assembly at co-occupied sites. These findings reveal that non-DNA binding cofactors can facilitate combinatorial interactions to induce new patterns of transcription factor occupancy and gene programming Examination of EBNA2/EBF1/EBP-jk binding in MutuI and LCL cell lines
Project description:Gene expression programs depend on sequence-specific DNA binding transcription factors, but the mechanisms that control the selective binding of these factors in a chromosomal and genomic context remain enigmatic. Here, we show that two master regulators of B-cell fate, namely EBF1 and RBP-jk, show variable genome-wide chromosome distribution in two related B-lymphocyte lines carrying different forms of Epstein-Barr Virus (EBV) latency. The latency-type specific EBV-encoded EBNA2 colocalized with RBP-jk and EBF1 at induced binding sites. Colocalization of EBF1, RBP-jk, and EBNA2 correlated with transcriptional activation. Conditional expression or repression of EBNA2 lead to a rapid alteration in RBP-jk and EBF1 binding. Biochemical and shRNA depletion studies provide evidence for cooperative assembly at co-occupied sites. These findings reveal that non-DNA binding cofactors can facilitate combinatorial interactions to induce new patterns of transcription factor occupancy and gene programming
Project description:Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiologic agent of primary effusion lymphoma (PEL). All PEL cell lines are infected with KSHV, and 70% are co-infected with Epstein-Barr Virus (EBV). KSHV reactivation from latency requires promoter-specific transactivation by the KSHV Rta protein through interactions with RBP-Jk (CSL), the cellular DNA binding component of the Notch signal transduction pathway. EBV transformation of primary B cells requires EBV nuclear antigen (EBNA)-2 to interact with RBP-Jk to direct the latent viral and cellular gene expression program. Although KSHV Rta and EBV EBNA-2 both require RBP-Jk for transactivation, previous studies have suggested that RBP-Jk-dependent transactivators do not function identically. We have found that the EBV latent protein LMP-1 is expressed in less than 5% of KSHV+/EBV+ PEL cells, but is induced in an Rta-dependent fashion when KSHV reactivates. KSHV Rta transactivates the EBV latency promoters in an RBP-Jk-dependent fashion and forms a ternary complex with RBP-Jk on the promoters. In B cells that are conditionally transformed by EBV alone, we show that KSHV Rta complements a short-term EBNA2 growth deficiency in an autocrine/paracrine manner. Complementaton of EBNA2-deficiency by Rta depends on RBP-Jk and LMP-1, and Rta transactivation is required for optimal growth of KSHV+/EBV+ PEL lines. Our data suggest that Rta can contribute to EBV-driven cellular growth by transactivating RBP-Jk-dependent EBV latency genes. However, our data also suggest that EBNA2 and Rta induce distinct alterations in the cellular proteomes that contribute to growth of infected cells.
Project description:Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiologic agent of primary effusion lymphoma (PEL). All PEL cell lines are infected with KSHV, and 70% are co-infected with Epstein-Barr Virus (EBV). KSHV reactivation from latency requires promoter-specific transactivation by the KSHV Rta protein through interactions with RBP-Jk (CSL), the cellular DNA binding component of the Notch signal transduction pathway. EBV transformation of primary B cells requires EBV nuclear antigen (EBNA)-2 to interact with RBP-Jk to direct the latent viral and cellular gene expression program. Although KSHV Rta and EBV EBNA-2 both require RBP-Jk for transactivation, previous studies have suggested that RBP-Jk-dependent transactivators do not function identically. We have found that the EBV latent protein LMP-1 is expressed in less than 5% of KSHV+/EBV+ PEL cells, but is induced in an Rta-dependent fashion when KSHV reactivates. KSHV Rta transactivates the EBV latency promoters in an RBP-Jk-dependent fashion and forms a ternary complex with RBP-Jk on the promoters. In B cells that are conditionally transformed by EBV alone, we show that KSHV Rta complements a short-term EBNA2 growth deficiency in an autocrine/paracrine manner. Complementaton of EBNA2-deficiency by Rta depends on RBP-Jk and LMP-1, and Rta transactivation is required for optimal growth of KSHV+/EBV+ PEL lines. Our data suggest that Rta can contribute to EBV-driven cellular growth by transactivating RBP-Jk-dependent EBV latency genes. However, our data also suggest that EBNA2 and Rta induce distinct alterations in the cellular proteomes that contribute to growth of infected cells. EREB2-5 cells were transfected and grown in the presence or absence of β-estradiol, as described. Seven days post-transfection, protein extracts were prepared, and 200 ugs. of each were analyzed using the RayBio Human Apoptosis Antibody Array Kit (RayBiotech) as per manufacturers suggestions. The membranes were exposed to autoradiography film for different times to detect the chemiluminescent signals. Images with signals in linear range were quantitated using the program ImageJ [59]. For each membrane, signals from the negative control spots were averaged, and then subtracted from each of the other spots. A signal was considered valid if its value exceeded both its average local background, and the average of all valid negative control values. Valid signals were normalized using the positive control spots (for cellular BID protein). Fold change in signals for each spot were quantitated by dividing by the valid signals for each corresponding spot on the minus β-estradiol membrane. Average fold change, and standard deviation, were calculated for each protein.
Project description:Interaction of the Kaposi’s sarcoma-associated herpesvirus (KSHV) Rta protein with the cellular Notch signaling effector, Recombination Signaling Protein (RBP)-Jk (aka CSL and CBF-1), is essential for viral reactivation from latency. We previously showed that Rta binds to a DNA motif repeated in the viral Mta promoter (called “CANT” or Rta-c) to stimulate RBP-Jk DNA binding, and distinguished Rta from the activated Notch-1 protein. To determine whether Rta’s mechanism would apply generally to other viral promoters, we employed chromatin immunoprecipitation/deep sequencing (ChIP/Seq) to identify Rta and RBP-Jk binding sites across the KSHV genome. We show that RBP-Jk binds nearly exclusively to unique genome sites during latency and reactivation. Many, but not all, reactivation-specific RBP-Jk peaks were associated with Rta bound to single Rta-c motifs. Other motifs that were over-represented with stimulated RBP-Jk DNA binding including those for the cellular DNA binding proteins BCL11A, MNT, MAF B, and TCF12. Four of the top seven motifs that were most over-represented with inhibition of RBP-Jk DNA binding were putative binding sites for the Pit/Oct/Unc (POU) family of proteins, including POU3F3 (Oct-8) and POU5F1 (Oct-4). Interestingly, two other POU motifs, including one for the POU2F1 (Oct-1) protein, are associated with inhibition of RBP-Jk DNA binding unless Rta bound to a nearby Rta-c motif. The relative distances between the Rta-c, POU, and RBP-Jk motifs were conserved at reactivation-specific RBP-Jk peaks in three promoters that Rta transactivated, and the Rta-c and Oct-1 motifs overlapped in two of those. The proximity of the Rta-c/Oct-1 motif to an RBP-Jk motif is critical for Rta transactivation of the ORF50AS/KbZIP promoter, and knockdown of Oct-1 protein debilitated reactivation and production of infectious virus. Our data suggest a broad role for POU proteins in regulating DNA binding of RBP-Jk and its associated transactivators.
Project description:Our group has previously identified how PARP1 can control EBV latency by: (1) altering the 3D virus chromatin structure [28]; (2) regulating CTCF binding on EBV promoters and supporting the latency expression program [29-32]; (3) repressing the lytic gene expression by binding BZLF1 promoter [33, 34]. To date, the therapeutic effect of PARP1 inhibitors on EBV+ lymphomagenesis has been poorly explored. Therefore, we aimed to investigate whether PARP1i was able to counteract EBV-driven tumors in a LCL xenograft model and identify, and confirm, possible mechanisms underlying its therapeutic effect. In the present study we demonstrate that PARP1 inhibition restricts EBV-driven lymphoma in vivo, pointing out the oncogene MYC as its functional target. Specifically, PARP1 inhibition reverts the tumor growth and the metastatic potential of EBV+ LCL, inducing a dramatic transcriptional reprogramming. Interestingly, the absence of PARP1 activity causes a decrease in MYC expression, subsequently leading to a dysregulation of MYC-associated co-factors and targets, both in vivo and in vitro. Our findings also corroborate the link between PARP1 and EBNA2 expression, that we previously demonstrated in vitro. Overall, our study strengthens the central role of PARP1 in EBV malignant transformation and outlines the EBNA2/MYC pathway as an additional target of PARP1 regulation in LCL
Project description:Epstein-Barr virus (EBV) infection converts resting human B cells into permanently growing lymphoblastoid cell lines (LCLs). The viral Epstein-Barr virus nuclear antigen 2 (EBNA2) plays key role in this process. It preferentially binds to B cell enhancers and establishes a specific viral and cellular gene expression program in LCLs. The cellular DNA binding factor CBF1/CSL serves as a sequence specific chromatin anchor for EBNA2. The ubiquitous expression of this highly conserved protein raises the question whether additional cellular factors might determine EBNA2 chromatin binding selectively in B cells. Here we used CBF1 deficient B cells to identify cellular genes up or downregulated by EBNA2 as well as CBF1 independent EBNA2 chromatin binding sites. Both, CBF1 independent EBNA2 target genes and chromatin binding sites are less frequent than CBF1 dependent EBNA2 functions. CBF1 independent EBNA2 binding sites are highly enriched for EBF1 binding motifs. We show that EBNA2 binds to EBF1 in CBF1 proficient and deficient B cells and requires EBF1 to bind to CBF1 independent binding sites. Our results identify EBF1 as a co-factor of EBNA2 which conveys B cell specificity to EBNA2. In order to test, if EBNA2 can exert any functions in the absence of its DNA adaptor CBF1, a microarray based genome wide screen for EBNA2 target genes in DG75 B cells that are either proficient (wt) or deficient (ko) for CBF1 was performed. CBF1 deficient DG75 cells (SM224.9) cells had been generated by gene targeting using homologous recombination in the somatic B cell line DG75. Both cell lines, the CBF1 proficient DG75 parental cell line and the CBF1 deficient somatic knock-out cell line constitutively express an estrogen receptor (ER) hormone binding domain EBNA2 fusion protein (ER/EBNA2). ER/EBNA2 is retained in the cytoplasm of the cell but is rapidly activated and translocated to the nucleus in response to estrogen. For expression profiling, DG75, DG75 CBF1 ko (SM224.9), DG75 ER/EBNA2 CBF1 wt (SM295 D6) and DG75 ER/EBNA2 CBF1 ko (SM296 D3) cells were cultured in estrogen supplemented media for 24 h, total cellular RNAs were harvested and processed for the hybridization of gene arrays. The cellular system used for this study has been published: Maier S, Santak M, Mantik A, Grabusic K, Kremmer E, Hammerschmidt W, et al. A somatic knockout of CBF1 in a human B-cell line reveals that induction of CD21 and CCR7 by EBNA-2 is strictly CBF1 dependent and that downregulation of immunoglobulin M is partially CBF1 independent. Journal of Virology. 2005 Jul;79(14):8784-92. PubMed PMID: 15994772.
Project description:Epstein-Barr virus (EBV) genomes persist in latently infected cells as extrachromosomal plasmids that attach to host chromosomes through the tethering functions of EBNA1, a viral encoded sequence-specific DNA binding protein. Here we employed circular chromosome conformation capture (4C) analysis to identify genomewide associations between EBV episomes and host chromosomes. We found that EBV episomes in Burkitt lymphoma (BL) cells preferentially associate with EBNA1 sequence-specific DNA binding sites in the cellular genome that are also enriched for B-cell factors EBF1 and RBP-jK, the repressive histone mark H3K9me3, and surrounded by AT-rich sequence. These attachment sites corresponded to transcriptionally silenced genes with enrichment in neuronal function. Depletion of EBNA1 from EBV latently infected BL cells led to a transcriptional de-repression of these silenced genes. EBV attachment sites in lymphoblastoid cells (LCLs) showed different correlations, suggesting that latency types are functionally linked to the epigenetic environment of host chromosome attachment sites.
Project description:It is currently unclear whether tissue changes surrounding multifocal epithelial tumors are a cause or consequence of cancer. Here, we provide evidence that loss of mesenchymal Notch/CSL signaling causes tissue alterations, including stromal atrophy and inflammation, which precede and are potent triggers for epithelial tumors. Mice carrying a mesenchymal-specific deletion of CSL/RBP-JK, a key Notch effector, exhibit spontaneous multifocal keratinocyte tumors that develop after dermal atrophy and inflammation. CSL-deficient dermal fibroblasts promote increased tumor cell proliferation through up-regulation of c-Jun and c-Fos expression and consequently higher levels of diffusible growth factors, inflammatory cytokines, and matrix remodeling enzymes. In human skin samples, stromal fields adjacent to cutaneous squamous cell carcinomas and multifocal premalignant actinic keratosis lesions exhibit decreased Notch/CSL signaling and associated molecular changes. Importantly, these changes in gene expression are also induced by UVA, a known environmental cause of cutaneous field cancerization and skin cancer. We used microarrays to detail the global changes in gene expression in dermal fibroblasts with in vivo and in vitro deletion of the RBP-Jk gene, compared to corresponding controls Global changes in gene expression in dermal fibroblasts with in vivo and in vitro deletion of the RBP-Jk gene were assessed, in parallel with the corresponding controls