Project description:Urolithiasis is a common disease to human beings, and idiopathic hypercalciuria (IH) is an important risk factor of calcium urolithiasis, previous studies strongly suggested that the decreased tubular Ca2+ reabsorption played a key role of hypercalciuria. However,the molecular mechanism of IH-urolithiasis formation is still not completely elucidated. GHS rat is regarded as an ideal animal model of calcium urolithiasis, reveals many identical pathophysiologic characteristics with IH patients . We analyzed miRNA expression profiles of the kidney of GHS rat in order to find out the target genes and signaling pathways in the pathogenesis of IH.
Project description:Urolithiasis is a common desease to human beings, and idiopathic hypercalciuria (IH) is an important risk factor of calcium urolithiasis, previous studies strongly suggested that the decreased tubular Ca2+ reabsorption played a key role of hypercalciuria. However,the molecular mechanism of IH-urolithiasis formation is still not completely elucidated. GHS rat is regarded as an ideal animal model of calcium urolithiasis, reveals many identical pathophysiologic characteristics with IH patients . We analyzed mRNA expression profiles of the kidney of GHS rat in order to find out the target genes and signaling pathways in the pathogenesis of IH.
Project description:Background. MicroRNAs (miRNAs) influence a variety of biological functions by regulating gene expression post-transcriptionally. Aberrant miRNA expression has been associated with many human diseases. Urolithiasis is a common disease, and idiopathic hypercalciuria (IH) is an important risk factor for calcium urolithiasis. However, miRNA expression patterns and their biological functions in urolithiasis remain unknown. Methods and Results. A multi-step approach combining microarray miRNA and mRNA expression profile and bioinformatics analysis was adopted to analyze dysregulated miRNAs and genes in genetic hypercalciuric stone-forming (GHS) rat kidneys, using normal Sprague-Dawley (SD) rats as controls. We identified 2418 mRNAs and 19 miRNAs as significantly differentially expressed, over 700 gene ontology (GO) terms and 83 KEGG pathways that were significantly enriched in GHS rats. In addition, we constructed an miRNA-gene network that suggested that rno-miR-674-5p, rno-miR-672-5p, rno-miR-138-5p and rno-miR-21-3p may play important roles in the regulatory network. Furthermore, signal-net analysis suggested that NF-kappa B likely plays a crucial role in hypercalciuria urolithiasis. Conclusions. This study presents a global view of mRNA and miRNA expression in GHS rat kidneys, and suggests that miRNAs may be important in the regulation of hypercalciuria. The data provide valuable insights for future research, which should aim at validating the role of the genes featured here in the pathophysiology of hypercalciuria.
Project description:Patients with idiopathic hypercalciuria (IH) and genetic hypercalciuric stone-forming (GHS) rats, an animal model of IH, are both characterized by normal serum Ca, hypercalciuria, Ca nephrolithiasis, reduced renal Ca reabsorption, and increased bone resorption. Serum 1,25-dihydroxyvitamin D [1,25(OH)(2)D] levels are elevated or normal in IH and are normal in GHS rats. In GHS rats, vitamin D receptor (VDR) protein levels are elevated in intestinal, kidney, and bone cells, and in IH, peripheral blood monocyte VDR levels are high. The high VDR is thought to amplify the target-tissue actions of normal circulating 1,25(OH)(2)D levels to increase Ca transport. The aim of this study was to elucidate the molecular mechanisms whereby Snail may contribute to the high VDR levels in GHS rats. In the study, Snail gene expression and protein levels were lower in GHS rat tissues and inversely correlated with VDR gene expression and protein levels in intestine and kidney cells. In human kidney and colon cell lines, ChIP assays revealed endogenous Snail binding close to specific E-box sequences within the human VDR promoter region, whereas only one E-box specifically bound Snail in the rat promoter. Snail binding to rat VDR promoter E-box regions was reduced in GHS compared with normal control intestine and was accompanied by hyperacetylation of histone H(3). These results provide evidence that elevated VDR in GHS rats likely occurs because of derepression resulting from reduced Snail binding to the VDR promoter and hyperacetylation of histone H(3).
Project description:To study human idiopathic hypercalciuria we developed an animal model, genetic hypercalciuric stone-forming rats, whose pathophysiology parallels that of human idiopathic hypercalciuria. Fed the oxalate precursor, hydroxyproline, every rat in this model develops calcium oxalate stones. Using this rat model, we tested whether chlorthalidone and potassium citrate combined would reduce calcium oxalate stone formation and improve bone quality more than either agent alone. These rats (113 generation) were fed a normal calcium and phosphorus diet with hydroxyproline and divided into four groups: diets plus potassium chloride as control, potassium citrate, chlorthalidone plus potassium chloride, or potassium citrate plus chlorthalidone. Urine was collected at six, 12, and 18 weeks and kidney stone formation and bone parameters were determined. Compared to potassium chloride, potassium citrate reduced urinary calcium, chlorthalidone reduced it further and potassium citrate plus chlorthalidone even further. Potassium citrate plus chlorthalidone decreased urine oxalate compared to all other groups. There were no significant differences in calcium oxalate supersaturation in any group. Neither potassium citrate nor chlorthalidone altered stone formation. However, potassium citrate plus chlorthalidone significantly reduced stone formation. Vertebral trabecular bone increased with chlorthalidone and potassium citrate plus chlorthalidone. Cortical bone area increased with chlorthalidone but not potassium citrate or potassium citrate plus chlorthalidone. Mechanical properties of trabecular bone improved with chlorthalidone, but not with potassium citrate plus chlorthalidone. Thus in genetic hypercalciuric stone-forming rats fed a diet resulting in calcium oxalate stone formation, potassium citrate plus chlorthalidone prevented stone formation better than either agent alone. Chlorthalidone alone improved bone quality, but adding potassium citrate provided no additional benefit.
Project description:Human idiopathic hypercalciuria (IH) is the most common cause of calcium oxalate nephrolithiasis with perturbed calcium metabolism with increased bone resorption and decreased renal calcium reabsorption, which can be phenotype-copied in the genetic hypercalciuric stone-forming (GHS) rat model. We previously demonstrated that high VDR expression plays important roles in the development of hypercalciuria in the GHS rats. However, the underlying mechanism through which VDR impact hypercalciuria development remains to be fully understood. Here, we sought to determine how VDR regulated its target genes that are implicated in calcium homeostasis and potentially hypercalciuria. We found that VDR expression in the GHS rats was elevated in the calcium transporting tissues, as well as in the thymus and prostate, but not in lung, brain, heart, liver and spleen, when compared with control SD rats. Snail expression in the GHS rats was significantly downregulated in kidney, intestine, thymus and testis. Intraperitoneal injection of 1,25(OH)2D3 significantly upregulated the expression of renal calcium sensing receptor (CaSR), intestinal calcium transporters transient receptor potential vanilloid type 6 (TRPV6), and VDR in GHS rats, compared with that in control SD rats. ChIP assays revealed that VDR specifically bound to the proximal promoters of target genes, followed by histone H3 hyperacetylation or hypermethylation. Collectively, our results suggest that elevated VDR expression may contribute to the development of hypercalciuria by sensitizing VDR target genes to 1,25(OH)2D3 through histone modifications at their promoter regions in a genetic hypercalciuric stone-forming (GHS) rat model.
Project description:Rational & objectiveDiabetes and uric acid kidney stones are strongly associated. Patients with calcium kidney stones also have higher risk of developing diabetes compared with nonkidney stone patients yet this has not been further investigated. We aimed to characterize insulin resistance in calcium kidney stone patients.Study designObservational.Setting & populationThis study was performed in the University of Chicago Clinical Research Center. Kidney stone patients (N = 42) were selected for having idiopathic hypercalciuria and calcium stones with no other medical conditions, and controls (N = 27) were healthy.ExposuresAll participants presented to the Clinical Research Center in a fasting state and at least 2 timed fasting blood and urine collections were collected before a fixed breakfast. Six additional timed blood and urine collections were performed after breakfast.OutcomesWe compared fasting and fed indices of insulin resistance between the groups.Analytic approachWe used t tests and multivariable linear regression models. A sensitivity analysis removing all patients who had ever been on a thiazide diuretic was also performed.ResultsIn separate multivariable linear models, kidney stone patients had higher fasting serum insulin levels (24 (3-46 pmol/L), P = 0.03) and higher homeostatic model of insulin resistance (HOMA-IR) (1.0 (0.2-1.8), P = 0.02). In separate multivariable linear models, kidney stone patients had higher fed serum glucose levels (10 (2-18 mg/dL), P = 0.01). Results were similar in a sensitivity analysis removing all patients who had ever been on a thiazide diuretic. There were no differences in urine composition based on HOMA-IR levels.LimitationsSingle institution. Small sample size limited subanalyses by different calcium stone types.ConclusionsCalcium kidney stone patients without diabetes or other medical conditions demonstrated signs of insulin resistance compared with healthy matched controls.
Project description:Renal stone disease (nephrolithiasis) affects 3-5% of the population and is often associated with hypercalciuria. Hypercalciuric nephrolithiasis is a familial disorder in over 35% of patients and may occur as a monogenic disorder that is more likely to manifest itself in childhood. Studies of these monogenic forms of hypercalciuric nephrolithiasis in humans, e.g. Bartter syndrome, Dent's disease, autosomal dominant hypocalcemic hypercalciuria (ADHH), hypercalciuric nephrolithiasis with hypophosphatemia, and familial hypomagnesemia with hypercalciuria have helped to identify a number of transporters, channels and receptors that are involved in regulating the renal tubular reabsorption of calcium. Thus, Bartter syndrome, an autosomal disease, is caused by mutations of the bumetanide-sensitive Na-K-Cl (NKCC2) co-transporter, the renal outer-medullary potassium (ROMK) channel, the voltage-gated chloride channel, CLC-Kb, the CLC-Kb beta subunit, barttin, or the calcium-sensing receptor (CaSR). Dent's disease, an X-linked disorder characterized by low molecular weight proteinuria, hypercalciuria and nephrolithiasis, is due to mutations of the chloride/proton antiporter 5, CLC-5; ADHH is associated with activating mutations of the CaSR, which is a G-protein-coupled receptor; hypophosphatemic hypercalciuric nephrolithiasis associated with rickets is due to mutations in the type 2c sodium-phosphate co-transporter (NPT2c); and familial hypomagnesemia with hypercalciuria is due to mutations of paracellin-1, which is a member of the claudin family of membrane proteins that form the intercellular tight junction barrier in a variety of epithelia. These studies have provided valuable insights into the renal tubular pathways that regulate calcium reabsorption and predispose to hypercalciuria and nephrolithiasis.