Snapshot and temporal scRNA-seq of progenitor cells to dissect human embryonic stem cells entry into endoderm progenitors
Ontology highlight
ABSTRACT: Human pluripotent stem cells (hPSCs) offer a unique cellular model to study lineage specifications of the primary germ layers during human development. We profiled single-cell RNA-seq (scRNA-seq) on four lineage-specific progenitor cells derived from hESCs. Our scRNA-seq analyses revealed each type of progenitors display various extend of heterogeneity. Specifically, definitive endoderm cells (DECs) not only show a greater degree of heterogeneity, but are also enriched in metabolic signatures. Followed by detailed temporal scRNA-seq profiling along DEC differentiation, we reconstructed a differentiation trajectory using a novel statistical pipeline named Wave-Crest. Wave-Crest further identifies candidate regulators during the transitioning phase from Brachyury (T)+ mesendoderm towards CXCR4+ DEC state. To functionally test identified novel regulators; we generated a live cell monitoring system, a T-2A-EGFP knock-in reporter cell line via CRISPR/CAS9. We demonstrated that, among the top candidate genes, KLF8 plays a pivotal role modulating mesendoderm to DEC differentiation. In this submission, 1810 raw fastq files are provided; 212 are re-analysis from GSE64016. Four expected count matrices are provided - 1) 1018 single cells from snapshot progenitors; 2) 758 single cells from time couse profiling; 3) 19 bulk RNA-seq sample from snapshot progenitors; 4) 15 bulk RNA-seq sample from time course profiling.
ORGANISM(S): Homo sapiens
PROVIDER: GSE75748 | GEO | 2016/07/21
SECONDARY ACCESSION(S): PRJNA305280
REPOSITORIES: GEO
ACCESS DATA