CFTR is a tumor suppressor gene in murine and human intestinal cancer [microarray]
Ontology highlight
ABSTRACT: Analysis of the cystic fibrosis gene Cftr in the colon and small intestine of Cftr-deficient murine model. The hypothesis was loss of Cftr altered expression of genes important in intestinal homeostasis and oncogenic signaling pathways. The results identified potential roles of Cftr in up- or down-regulating major gene clusters that belong to groups of immune response, ion channel, intestinal stem cell and other growth regulators.
Project description:Analysis of the cystic fibrosis gene Cftr in the colon and small intestine of Cftr-deficient murine model. The hypothesis was loss of Cftr altered expression of genes important in intestinal homeostasis and oncogenic signaling pathways. The results identified potential roles of Cftr in up- or down-regulating major gene clusters that belong to groups of immune response, ion channel, intestinal stem cell and other growth regulators.
Project description:Analysis of the cystic fibrosis gene Cftr in the colon and small intestine of Cftr-deficient murine model. The hypothesis was loss of Cftr altered expression of genes important in intestinal homeostasis and oncogenic signaling pathways. The results identified potential roles of Cftr in up- or down-regulating major gene clusters that belong to groups of immune response, ion channel, intestinal stem cell and other growth regulators. Total RNA was isolated from the normal intestine of three Apc wildtype Cftr wildtype and three Apc Cftr-deficient mice. For the colon intestinal epithelia from the same region of the distal colon of each mouse was separated from the rest of the intestine prior to RNA isolation. Therefore RNA was obtained from only epithelial cells. For the small intestine, a section of the mid-duodenum from each mouse was sheared of villi prior to RNA isolation. Therefore RNA was obtained from whole duodenum (minus villi), containing epithelia cells but also stromal and other cells. RNA Seq was then conducted on all samples, with at least two replicates for each biological sample.
Project description:Background: Cystic fibrosis (CF) is caused by mutations in the CFTR gene that impair function of this cAMP-regulated Cl- channel. In the small intestine, loss of CFTR function creates a dehydrated, acidic luminal environment which is believed to cause an accumulation of mucus, a phenotype characteristic of CF. CF mice have an innate immune response and impaired intestinal transit as well. We investigated whether lubiprostone, which activates the CLC2 Cl- channel, would improve the CF intestinal phenotype. Methods: Cftrtm1UNC (CF) and wildtype (WT) littermate mice on the C57BL/6 background were used. Lubiprostone (10ug/kg-day) was administered by gavage for two weeks. Mucus accumulation was estimated from crypt lumen widths in Carnoy's-fixed, PAS/AB stained sections. Luminal bacterial load was measured by qPCR for the bacterial 16S gene. Gastric emptying and small intestinal transit were assessed by gavage of rhodamine dextran. Gene expression was evaluated by Affymetrix Mouse430 2.0 microarray. Results: Crypt width in control CF mice was 700% that of WT mice (P<0.001). Lubiprostone did not affect WT crypt width but, unexpectedly, increased CF crypt width 22% (P=0.001). Lubiprostone increased bacterial load in WT mice to 490% of WT control levels (P=0.008). Conversely, lubiprostone decreased bacterial overgrowth in CF mice by 60% (P=0.005). Lubiprostone significantly increased gastric emptying at 20 min postgavage in both WT (P<0.001; control=57±3%, treated=81±4%) and CF mice (P<0.001; control=48±4%, treated=75±5%). After lubiprostone small intestinal transit was significantly enhanced in WT mice (P=0.024) but the effect was not significant in CF mice (P=0.377). Among other innate immune markers, expression of mast cell genes was elevated ~20-fold in the control CF intestine and lubiprostone decreased expression to WT control levels. Conclusions: These results indicate that lubiprostone has some benefits for the CF intestinal phenotype, especially on bacterial overgrowth and the innate immune response. The unexpected observation of increased mucus accumulation in the crypts of lubiprostone-treated CF mice suggests the possibility that lubiprostone increases mucus secretion. For each group (control wild type, lubiprostone-treated wild type, contol Cftr null, and lubiprostone-treated cftr null), equal amounts of total RNA extracted from the entire small intestine were pooled for analysis.
Project description:Production of functional proteins requires multiple steps including gene transcription and post-translational processing. MicroRNAs (miRNA) can regulate individual stages of these processes. Despite the importance of the cystic fibrosis transmembrane conductance regulator (CFTR) channel for epithelial anion transport, how its expression is regulated remains uncertain. We discovered that microRNA-138 regulates CFTR expression through its interactions with the transcriptional regulatory protein SIN3A. Treating airway epithelia with a miR-138 mimic increased CFTR mRNA and also enhanced CFTR abundance and transepithelial Cl- permeability independently of elevated mRNA levels. A miR-138 anti-miR had the opposite effects. Importantly, miR-138 altered the expression of many genes encoding proteins that associate with CFTR and may influence its biosynthesis. The most common CFTR mutation, M-NM-^TF508, causes protein misfolding, degradation, and cystic fibrosis. Remarkably, manipulating the miR-138 regulatory network also improved biosynthesis of CFTR-M-NM-^TF508 and restored Cl- transport to cystic fibrosis airway epithelia. This novel miRNA-regulated network directs gene expression from the chromosome to the cell membrane, indicating that an individual miRNA can control a cellular process broader than previously recognized. This discovery also provides new therapeutic avenues for restoring CFTR function to cells affected by the most common cystic fibrosis mutation. 12 samples of Calu-3 cells representing different interventions.
Project description:Background: Cystic fibrosis (CF) is caused by mutations in the CFTR gene that impair function of this cAMP-regulated Cl- channel. In the small intestine, loss of CFTR function creates a dehydrated, acidic luminal environment which is believed to cause an accumulation of mucus, a phenotype characteristic of CF. CF mice have an innate immune response and impaired intestinal transit as well. We investigated whether lubiprostone, which activates the CLC2 Cl- channel, would improve the CF intestinal phenotype. Methods: Cftrtm1UNC (CF) and wildtype (WT) littermate mice on the C57BL/6 background were used. Lubiprostone (10ug/kg-day) was administered by gavage for two weeks. Mucus accumulation was estimated from crypt lumen widths in Carnoy's-fixed, PAS/AB stained sections. Luminal bacterial load was measured by qPCR for the bacterial 16S gene. Gastric emptying and small intestinal transit were assessed by gavage of rhodamine dextran. Gene expression was evaluated by Affymetrix Mouse430 2.0 microarray. Results: Crypt width in control CF mice was 700% that of WT mice (P<0.001). Lubiprostone did not affect WT crypt width but, unexpectedly, increased CF crypt width 22% (P=0.001). Lubiprostone increased bacterial load in WT mice to 490% of WT control levels (P=0.008). Conversely, lubiprostone decreased bacterial overgrowth in CF mice by 60% (P=0.005). Lubiprostone significantly increased gastric emptying at 20 min postgavage in both WT (P<0.001; control=57±3%, treated=81±4%) and CF mice (P<0.001; control=48±4%, treated=75±5%). After lubiprostone small intestinal transit was significantly enhanced in WT mice (P=0.024) but the effect was not significant in CF mice (P=0.377). Among other innate immune markers, expression of mast cell genes was elevated ~20-fold in the control CF intestine and lubiprostone decreased expression to WT control levels. Conclusions: These results indicate that lubiprostone has some benefits for the CF intestinal phenotype, especially on bacterial overgrowth and the innate immune response. The unexpected observation of increased mucus accumulation in the crypts of lubiprostone-treated CF mice suggests the possibility that lubiprostone increases mucus secretion.
Project description:Production of functional proteins requires multiple steps including gene transcription and post-translational processing. MicroRNAs (miRNA) can regulate individual stages of these processes. Despite the importance of the cystic fibrosis transmembrane conductance regulator (CFTR) channel for epithelial anion transport, how its expression is regulated remains uncertain. We discovered that microRNA-138 regulates CFTR expression through its interactions with the transcriptional regulatory protein SIN3A. Treating airway epithelia with a miR-138 mimic increased CFTR mRNA and also enhanced CFTR abundance and transepithelial Cl- permeability independently of elevated mRNA levels. A miR-138 anti-miR had the opposite effects. Importantly, miR-138 altered the expression of many genes encoding proteins that associate with CFTR and may influence its biosynthesis. The most common CFTR mutation, ΔF508, causes protein misfolding, degradation, and cystic fibrosis. Remarkably, manipulating the miR-138 regulatory network also improved biosynthesis of CFTR-ΔF508 and restored Cl- transport to cystic fibrosis airway epithelia. This novel miRNA-regulated network directs gene expression from the chromosome to the cell membrane, indicating that an individual miRNA can control a cellular process broader than previously recognized. This discovery also provides new therapeutic avenues for restoring CFTR function to cells affected by the most common cystic fibrosis mutation.
Project description:We evaluate CRISPR-based prime editing for application in organoids. First we model mutations in TP53 in intestinal and hepatocyte oganoids and determine the efficiency and accuracy of mutation induction on multiple targets. Then, to evaluate potential clinical applicability of prime editing we repair mutations in the CFTR channel that cause cystic fibrosis in intestinal organoids. First we repair the CFTR-F508del mutation which is the most common mutation in cystic fibrosis. Then we compare adenine base editing to prime editing by repairing the CFTR-R785* mutation using both strategies.
Project description:Cystic fibrosis transmembrane conductance regulator (Cftr) knockout mice present the clinical features of low body weight and intestinal disease permitting an assessment of the interrelatedness of these phenotypes in a controlled environment. To identify intestinal alterations which affect body weight in CF mice the histological phenotypes of crypt-villus axis height, goblet cell hyperplasia, and mast cell infiltrate were measured, cardiac blood samples assessed, and gene expression profiling of the ileum was completed for 12 week old (C57BL/6xBALB) F2 Cftrtm1UNC and non-CF mice presenting a range of body weight. Crypt-villus axis height decreased with increasing weight in CF, but not control, mice. Goblet cell hyperplasia and mast cell infiltration in the submucosa and muscularis externa layers of the CF intestine, were identified to be independent of bodyweight. Blood triglyceride levels were found to be significantly lower in CF mice than control mice (p = 3.02 x 10-5) but were not dependent on CF mouse body weight. By expression profiling, genes of DNA replication and lipid metabolism were among those altered in CF mice relative to non-CF controls; and no differences in gene expression were measured between samples from CF mice in the 25th and 75th percentile for weight. This study indicates that the absence of Cftr leads to altered morphology in the CF intestine the extent of which is correlated with body weight in CF mice while CF related changes in blood triglyceride levels and in the intestinal gene expression profile were not dependent on body weight in this model. Experiment Overall Design: B6xBALB F2 mice gene expression was collected for nine CF-/- mice and 6 controls. Differential expression was analyzed between the groups
Project description:Misfolded membrane proteins are retained in the endoplasmic reticulum (ER) and are subject to the ER associated degradation pathway, which clears the secretory pathway of potentially toxic species. While the transcriptional response to environmental stressors has been extensively studied, limited data exist describing the cellular response to misfolded membrane proteins. To this end, we expressed and then compared the transcriptional profiles elicited by the synthesis of three ER retained, misfolded ion channels: The α subunit of the epithelial sodium channel, ENaC, the cystic fibrosis transmembrane conductance regulator, CFTR, and an inwardly rectifying potassium channel, Kir2.1, which vary in their mass, membrane topologies, and quaternary structures. To examine transcriptional profiles in a null background, the proteins were expressed in yeast, which was previously used to examine the degradation requirements for each substrate. Surprisingly, the proteins failed to induce a canonical unfolded protein response or heat shock response, although messages encoding several cytosolic and ER lumenal protein folding factors rose when αENaC or CFTR were expressed. In contrast, the levels of these genes were unaltered by Kir2.1 expression; instead, the yeast iron regulon was activated. Nevertheless, a significant number of genes that respond to various environmental stressors were upregulated by all three substrates, and when compared to previous microarray data we deduced the existence of a group of genes that reflect a novel misfolded membrane protein response. These data indicate that aberrant proteins in the ER elicit profound yet unique cellular responses. Yeast heterologously expressing αENaC, CFTR, Kir2.1 or harboring a vector control were grown under identical conditions (at least 3 biological replicates) and subject to gene expression analysis.
Project description:Cystic fibrosis, the most commonly inherited lethal pulmonary disorder in Caucasians, is caused by mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR). To identify genomic responses to the presence or absence of CFTR in pulmonary tissues in vivo, microarray analyses of lung mRNAs were performed on whole lung tissue from mice lacking (CFTR(-)) or expressing mouse CFTR (CFTR(+)). Whereas the histology of lungs from CFTR(-) and CFTR(+) mice was indistinguishable, statistically significant increases in the relative abundance of 29 and decreases in 25 RNAs were identified by RNA microarray analysis. Of RNAs whose expression was consistently altered by the absence of CFTR, functional classes of genes influencing gene transcription, inflammation, intracellular trafficking, signal transduction, and ion transport were identified. RNAs encoding the transcription factor CCAAT enhancer-binding protein (CEBP) delta and interleukin (IL) 1beta, both known to regulate CFTR expression, were induced, perhaps indicating adaptation to the lack of CFTR. RNAs mediating lung inflammation including calgranulin-S100 family members, IL-1beta and IL-4, were increased. Likewise, expression of several membrane transport proteins that interact directly with CFTR were increased, suggesting that CFTR-protein complexes initiate genomic responses. Absence of CFTR influenced the expression of genes modulating diverse pulmonary cell functions that may ameliorate or contribute to the pathogenesis of CF. Lungs from sex-matched littermates at 3, 6, and 11 weeks of agewere carefully dissected and the conducting airways and mediastinal structures removed.