Global gene expression in response to genetic and growth factor manipulation of TWIST1 expression and function
Ontology highlight
ABSTRACT: In addition to their stem/progenitor properties, mesenchymal stem cells (MSCs) also exhibit various effector functions potent effector (angiogenic, anti-inflammatory, immune-modulatory) functions that are largely paracrine in nature. It is widely believed that effector functions underlie most of the therapeutic potential of MSCs and are independent of their stem/progenitor properties. Here we demonstrate that stem/progenitor and effector functions are coordinately regulated at the cellular level by the transcription factor Twist1 and specified within populations according to a hierarchical model. We further show that manipulation of Twist1 levels by genetic approaches or by exposure to widely used culture supplements including fibroblast growth factor 2 (Ffg2) and interferon gamma (IFN-gamma) alters MSC efficacy in cell-based and in vivo assays in a predictable manner. Thus, by mechanistically linking stem/progenitor and effector functions our studies provide a unifying framework in the form of an MSC hierarchy that models the functional complexity of populations. Using this framework, we developed a Clinical Indications Prediction (CLIP) scale that predicts how donor-to-donor heterogeneity and culture conditions impact the therapeutic efficacy of MSC populations for different disease indications. We used microarrays to detail the global gene expression in response to genetic and growth factor manipulation of TWIST1 expression and function.
ORGANISM(S): Homo sapiens
PROVIDER: GSE76158 | GEO | 2015/12/19
SECONDARY ACCESSION(S): PRJNA306492
REPOSITORIES: GEO
ACCESS DATA