Project description:Sexual dimorphisms are well recognized in various cardiac diseases, including myocardial infarction (MI). MI develops later in women, but once established, it contributes more persistent symptoms and higher mortality than in men. Similar observations have been reported in murine model of MI. Although mRNA-level sexual dimorphism of MI have been reported, whether miRNA transcriptome also confers such dimorphism remains unknown. Comprehensive understanding of the mRNA- and miRNA-level genetic programs underlying the heart sexual dimorphisms will expectedly improve clinical outcome by facilitating the development of gender specific treatment strategies. Here, by conducting miRNA microarray analysis of murine MI model samples, we set out to characterize the heart sexual dimorphisms at the level of miRNA transcriptome The left anterior descending (LAD) coronary artery of mice aged 10 weeks was surgically ligated to create extensive MI. The ventricular septum of the areas at risk of ischemia was sampled on post-operative day 28. Total RNA was extracted using Sepasol solution (Sepasol-RNA I super G, nakalai tesque, Japan), and microarray analysis was performed using Affymetrix GeneChip® miRNA 3.0 Arrays
Project description:Sexual dimorphisms are well recognized in various cardiac diseases, including myocardial infarction (MI). MI develops later in women, but once established, it contributes more persistent symptoms and higher mortality than in men. Similar observations have been reported in murine model of MI. Although mRNA-level sexual dimorphism of MI have been reported, whether miRNA transcriptome also confers such dimorphism remains unknown. Comprehensive understanding of the mRNA- and miRNA-level genetic programs underlying the heart sexual dimorphisms will expectedly improve clinical outcome by facilitating the development of gender specific treatment strategies. Here, by conducting miRNA microarray analysis of murine MI model samples, we set out to characterize the heart sexual dimorphisms at the level of miRNA transcriptome
Project description:Sexual dimorphisms are well recognized in various cardiac diseases, including myocardial infarction (MI). MI develops later in women, but once established, it contributes more persistent symptoms and higher mortality than in men. Although mRNA-level sexual dimorphism of MI have been reported, whether miRNA transcriptome also confers such dimorphism remains unknown. Comprehensive understanding of the mRNA- and miRNA-level genetic programs underlying the heart sexual dimorphisms will expectedly improve clinical outcome by facilitating the development of gender specific treatment strategies. Here, by conducting miRNA microarray analysis of human MI samples, we set out to characterize the heart sexual dimorphisms at the level of miRNA transcriptome Human tissue samples, acquired during post-mortem examination and frozen in liquid nitrogen, were provided by the department of pathology, Tokyo Metropolitan Geriatric Hospital after the approval from the ethical committee. Age- and sex-matched cohorts were selected to compare healthy hearts to those with post-MI LV remodeling. Border zone for myocardial infarction was sampled. Total RNA was extracted using Sepasol solution (Sepasol-RNA I super G, nakalai tesque, Japan), and microarray analysis was performed using Affymetrix GeneChip® miRNA 3.0 Arrays
Project description:Sexual dimorphisms are well recognized in various cardiac diseases, including myocardial infarction (MI). MI develops later in women, but once established, it contributes more persistent symptoms and higher mortality than in men. Although mRNA-level sexual dimorphism of MI have been reported, whether miRNA transcriptome also confers such dimorphism remains unknown. Comprehensive understanding of the mRNA- and miRNA-level genetic programs underlying the heart sexual dimorphisms will expectedly improve clinical outcome by facilitating the development of gender specific treatment strategies. Here, by conducting miRNA microarray analysis of human MI samples, we set out to characterize the heart sexual dimorphisms at the level of miRNA transcriptome