Gene Expression changes induced by exposure to field water samples collected at Greenhorn Mine, CA
Ontology highlight
ABSTRACT: Our research goal is to illustrate the potential of gene expression profiling to discriminate between polluted and non-polluted field sites and predict the presence of a specific contaminant. Using a gene expression analysis, we challenged our custom Daphnia magna cDNA microarray to determine the presence of a specific metal toxicant in blinded field samples collected from two copper mines in California. We compared the gene expression profiles from our field samples to previously established expression profiles for Cu, Cd, and Zn. The expression profiles from the Cu containing field samples clustered with the Cu specific gene expression profiles. Many of the previously discovered copper biomarkers were also differentially expressed in the field samples, suggesting that gene expression analysis is capable of producing robust biomarkers of exposure, which can be validated in field studies. In addition, our study revealed that upstream field samples containing undetectable levels of Cu caused the differential expression of only a few genes, lending support for the concept of a No Observed Transcriptional Effect Level (NOTEL). If confirmed by further studies, the NOTEL may play an important role in discriminating polluted and non-polluted sites in future monitoring efforts. Keywords: ecotoxicogenomic exposure study
Project description:Our research goal is to illustrate the potential of gene expression profiling to discriminate between polluted and non-polluted field sites and predict the presence of a specific contaminant. Using a gene expression analysis, we challenged our custom Daphnia magna cDNA microarray to determine the presence of a specific metal toxicant in blinded field samples collected from two copper mines in California. We compared the gene expression profiles from our field samples to previously established expression profiles for Cu, Cd, and Zn. The expression profiles from the Cu containing field samples clustered with the Cu specific gene expression profiles. Many of the previously discovered copper biomarkers were also differentially expressed in the field samples, suggesting that gene expression analysis is capable of producing robust biomarkers of exposure, which can be validated in field studies. In addition, our study revealed that upstream field samples containing undetectable levels of Cu caused the differential expression of only a few genes, lending support for the concept of a No Observed Transcriptional Effect Level (NOTEL). If confirmed by further studies, the NOTEL may play an important role in discriminating polluted and non-polluted sites in future monitoring efforts. Keywords: ecotoxicogenomic exposure study
Project description:Anthropogenic pollution has increased the levels of heavy metals in the environment. Bacterial populations continue to thrive in highly polluted environments and bacteria must have mechanisms to counter heavy metal stress. We chose to examine the response of the environmentally-relevant organism Pseudomonas aeruginosa to two different copper treatments. A short, 45 min exposure to copper was done in the Cu shock treatment to examine the immediate transcriptional profile to Cu stress. The Cu adapted treatment was designed to view the transcriptional profile of cells that were actively growing in the presence of Cu. Keywords: stress response
Project description:Anthropogenic pollution has increased the levels of heavy metals in the environment. Bacterial populations continue to thrive in highly polluted environments and bacteria must have mechanisms to counter heavy metal stress. We chose to examine the response of the environmentally-relevant organism Pseudomonas aeruginosa to two different copper treatments. A short, 45 min exposure to copper was done in the Cu shock treatment to examine the immediate transcriptional profile to Cu stress. The Cu adapted treatment was designed to view the transcriptional profile of cells that were actively growing in the presence of Cu. Experiment Overall Design: We analyzed 2 biological replicates of Pseudomonas aeruginosa exposed to a 45 min Cu shock as compared to a control that was exposed to HCl to bring the pH to similar levels. We analyzed 2 biological replicates of Pseudomonas aeruginosa that were grown in the presence of Cu for approx. 6h (Cu adapted) as compared to an untreated control.
Project description:The testing of NMs under the currently available standard toxicity tests does not cover many of the NMs specificities. One of the current recommended approaches forward lays on understanding the mechanisms of action as these can help predicting long term effects and safe-by-design production. Copper nanomaterials (Cu-NMs) usage has been highly increasing with the concern in terms of exposure, effect and associated risks. In the present study we used the high-throughput gene expression tool developed for Enchytraeus crypticus (44Kx4 Agilent microarray) to study to the effect of exposure to several copper forms. The copper treatments include two NMs (spherical and wires) and two copper-salt treatments (CuNO3 spiked and Cu field historical contamination). Testing was done based on reproduction effect concentrations (EC20, EC50) using 3 and 7 days exposure periods.
Project description:This pilot clinical trial studies copper Cu 64 (64Cu) tetra-azacyclododecanetetra-acetic acid (DOTA)-trastuzumab positron emission tomography (PET)/computed tomography (CT) in studying patients with gastric, or stomach cancer. Diagnostic procedures, such as copper Cu 64-DOTA-trastuzumab PET/CT, may help doctors study the characteristics of tumors and choose the best treatment.
Project description:Copper-limiting growth conditions were thought to cause an induction of genes possibly involved in copper uptake and sorting. This rationale in mind, we performed microarray analyses on B. japonicum cells grown in three variations of the BVM minimal medium. Variant 1 contained 2 μM CuSO4 (copper excess). Variant 2 was prepared in HCl-treated glassware without any copper added (copper starvation). The residual copper concentration in this copper-starvation medium was analyzed by GF-AAS and determined to be 5 nM. Variant 3 (extreme copper limitation) was prepared like variant 2 but with the addition of 10 μM BCS and 1 mM ascorbic acid where BCS chelates Cu(I) selectively, and ascorbic acid reduces any Cu(II) to Cu(I). Changes in the transcription profiles were recorded by the pairwise comparison of cells grown in variant 2 vs. 1, and variant 3 vs. 2. Only a small set of genes were differentially up- or down-regulated when copper-starved cells were compared with cells grown in copper excess. Most notably, five genes located adjacent to each other on the B. japonicum genome displayed an increased expression: bll4882 to bll4878. The five genes were named pcuA, pcuB, pcuC, pcuD, and pcuE (mnemonic of proteins for Cu trafficking). The genes with decreased expression are either of unknown function or – not surprisingly – play a role in copper resistance. Extreme copper limitation (variant 3 vs. 2) did not further enhance the expression of the five pcu genes. Instead, another cluster of adjacent genes was strongly up-regulated: bll0889 to bll0883, which code for unidentified transport functions. Incidentally, the list also includes the copper chaperone ScoI. Taken together, copper-limiting growth conditions have led to the de-repression of genes potentially involved in copper acquisition.
Project description:Copper (Cu) plays an essential role in cellular metabolism and limits phytoplankton growth and production in parts of the open sea. Whole transcriptome analysis provides a powerful tool to explore gene expression profiles and cellular metabolic pathways regulated by Cu. In this study, we identified Cu-regulated genes by profiling the transcriptomes of an oceanic diatom, Thalassiosira oceanica 1005, adapted to survive in a Cu-limited and Cu-replete environment. The results provide insights to the mechanisms of adaptation and acclimation of T. oceanica to low Cu environments.
Project description:Copper-limiting growth conditions were thought to cause an induction of genes possibly involved in copper uptake and sorting. This rationale in mind, we performed microarray analyses on B. japonicum cells grown in three variations of the BVM minimal medium. Variant 1 contained 2 M-NM-<M CuSO4 (copper excess). Variant 2 was prepared in HCl-treated glassware without any copper added (copper starvation). The residual copper concentration in this copper-starvation medium was analyzed by GF-AAS and determined to be 5 nM. Variant 3 (extreme copper limitation) was prepared like variant 2 but with the addition of 10 M-NM-<M BCS and 1 mM ascorbic acid where BCS chelates Cu(I) selectively, and ascorbic acid reduces any Cu(II) to Cu(I). Changes in the transcription profiles were recorded by the pairwise comparison of cells grown in variant 2 vs. 1, and variant 3 vs. 2. Only a small set of genes were differentially up- or down-regulated when copper-starved cells were compared with cells grown in copper excess. Most notably, five genes located adjacent to each other on the B. japonicum genome displayed an increased expression: bll4882 to bll4878. The five genes were named pcuA, pcuB, pcuC, pcuD, and pcuE (mnemonic of proteins for Cu trafficking). The genes with decreased expression are either of unknown function or M-bM-^@M-^S not surprisingly M-bM-^@M-^S play a role in copper resistance. Extreme copper limitation (variant 3 vs. 2) did not further enhance the expression of the five pcu genes. Instead, another cluster of adjacent genes was strongly up-regulated: bll0889 to bll0883, which code for unidentified transport functions. Incidentally, the list also includes the copper chaperone ScoI. Taken together, copper-limiting growth conditions have led to the de-repression of genes potentially involved in copper acquisition. Microarray-based transcriptome analysis of B. japonicum 110spc4 wild-type cells grown under normal, copper-limiting and copper excess conditions
Project description:We used digital gene expression (NlaIII sequence tags) and RNA-Seq to compare the transcriptomes of Cu-replete vs. Cu–deficient Chlamydomonas wild-type cells to reveal dozens of mRNAs whose abundance is modified. Half of the corresponding genes are targets of CRR1, a master regulator of nutritional copper sensing, and are associated with candidate CRR1 binding sites. The targets include many plastid-localized proteins, like FDX5 encoding a ferredoxin isoform, and CGL78, encoding a protein conserved in the green lineage, indicative of modified plastid metabolism. Immunoblot analysis and proteome profiles recapitulate the transcriptome profiles. New evidence for Cu sparing is suggested by up-regulation of AOF1 encoding a copper-independent but flavin-dependent amine oxidase and down-regulation of two metal- binding proteins. Genes encoding redox proteins, many of which function in lipid metabolism, are over-represented, which is compatible with the role of Cu in biology. Lipid profiles indicate a CRR1-dependent increase in Cu-deficient cells in the proportion of unsaturated (16:2, 16:3, 16:4, 18:2) fatty acids at the expense of the more saturated (16:0, 16:1, 18:0) precursors, especially on plastid galactolipids, which validates the increased expression of acyl-ACP and plastid-localized w-6 desaturases. CRR1-independent changes in the transcriptome suggest a role for Cu in oxygen sensing in Chlamydomonas. Sampling of Chlamydomonas CC-1021 (2137) and crr1-2, crr1:CRR1 mutant cells (the mutant is knock-down for the transcription factor crr1, which plays a key role in the transcriptional response to copper levels) cultivated in TAP or minimal medium under Cu-sufficient (control) and Cu-defficient conditions. poly-A purification, NlaIII digestion/random fragmentation
Project description:Despite the increased utilization of nanoparticles, the behavior and effect in the environment is largely unknown and few resources are available for health and environmental effect studies. Enchytraeids are extensively used in studies of soil ecotoxicology and recently, a cDNA microarray for Enchytraeus albidus was developed, allowing also toxicogenomic studies in this species. These organisms are ecologically relevant small worms that indirectly contribute to the regulation and degradation of organic matter. In this study we compared the gene expression profiles of E. albidus when exposed to copper-salt (CuCl2) and copper nanoparticles (Cu-NP) spiked soil. The worms were exposed for 48 hours in soil to a range of concentrations. Microarray hybridizations revealed different response patterns between copper-salt and copper nanoparticles exposed organisms, these differences are mainly related with transcripts involved in the energy metabolism of the organisms. Despite unknown gene function in the data-set there are indications that Cu-salt and Cu-NP exposure induced specific gene level responses.