Project description:The vitamin D receptor (VDR) regulates cell proliferation and differentiation including epidermal keratinocytes by modulating transcription of its target genes. We are investigating the role of VDR in epidermal stem cells and their progenies in the regeneration process of epidermis and hair in the skin. VDR null mice are utilized in which VDR is specifically deleted in keratin 14 (K14) expressing keratinocytes by Cre-lox strategy. The impact of VDR deletion was evaluated by comparison of VDR null mice with no cre littermate control mice. The VDR was abundantly expressed in potential epidermal stem cells including basal cells in interfollicular epidermis (IFE), and in CD34 expressing bulge keratinocytes in hair follicles. Gene expression profiles and subsequent pathway analysis of stem cell enriched keratinocyte populations revealed that the VDR deletion significantly suppressed β-catenin signaling as well as VDR signaling. The role of VDR in epidermal stem cells was studied during hair follicle cycling and wound healing processes. The epidermal stem cells were not appropriately stimulated by hair depilation, and did not reinitiate anagen in the hair follicles resulting in a failure of hair regrowth. In addition, the stem cells were not fully activated after full thickness wounds were generated in VDR null skin under a low calcium diet to suppress compensation pathways. Cell proliferation was not fully induced in potential stem cells located in both IFE and hair follicles near the wounding edges, and re-epithelialization rate was delayed in VDR null skin. Gene expression profiling of the wounded skin (3 days after injury) indicated that β-catenin signaling was not fully induced in VDR null skin comparable to that observed in β-catenin null mice. The β-catenin target genes including Axin2 and cell cycle regulators involved in epidermal stem cell function were not induced in the edges of the wound of VDR null skin. These results demonstrated that VDR plays an essential role in hair cycling and wound healing processes through regulation of β-catenin signaling in epidermal stem cells and their progenies. n=3 CON and KO (each sample contain RNA isolated from wounded or nonwounded skins excised from 3 mice)
Project description:The vitamin D receptor (VDR) regulates cell proliferation and differentiation including epidermal keratinocytes by modulating transcription of its target genes. We are investigating the role of VDR in epidermal stem cells and their progenies in the regeneration process of epidermis and hair in the skin. VDR null mice are utilized in which VDR is specifically deleted in keratin 14 (K14) expressing keratinocytes by Cre-lox strategy. The impact of VDR deletion was evaluated by comparison of VDR null mice with no cre littermate control mice. The VDR was abundantly expressed in potential epidermal stem cells including basal cells in interfollicular epidermis (IFE), and in CD34 expressing bulge keratinocytes in hair follicles. Gene expression profiles and subsequent pathway analysis of stem cell enriched keratinocyte populations revealed that the VDR deletion significantly suppressed β-catenin signaling as well as VDR signaling. The role of VDR in epidermal stem cells was studied during hair follicle cycling and wound healing processes. The epidermal stem cells were not appropriately stimulated by hair depilation, and did not reinitiate anagen in the hair follicles resulting in a failure of hair regrowth. In addition, the stem cells were not fully activated after full thickness wounds were generated in VDR null skin under a low calcium diet to suppress compensation pathways. Cell proliferation was not fully induced in potential stem cells located in both IFE and hair follicles near the wounding edges, and re-epithelialization rate was delayed in VDR null skin. Gene expression profiling of the wounded skin (3 days after injury) indicated that β-catenin signaling was not fully induced in VDR null skin comparable to that observed in β-catenin null mice. The β-catenin target genes including Axin2 and cell cycle regulators involved in epidermal stem cell function were not induced in the edges of the wound of VDR null skin. These results demonstrated that VDR plays an essential role in hair cycling and wound healing processes through regulation of β-catenin signaling in epidermal stem cells and their progenies.
Project description:Vitamin D (VitD) deficiency is estimated to affect ~40% of the world’s population. Notably, VitD deficiency has been associated with impaired muscle maintenance and insulin resistance. VitD exerts its actions through the ubiquitous Vitamin D-receptor (VDR), the expression of which was recently confirmed in fully-differentiated muscle. To seek a possible autonomous role of the VDR in skeletal muscle, we first generated stable VDR-knockdown cells, which exhibited impaired myogenesis (i.e. cell-cycling, differentiation and myotube formation). In vivo VDR-knockdown in rat hind-limbs elicited myofibre atrophy and triggered autophagy pathways. In contrast, in vivo VDR-overexpression yielded myofibre hypertrophy; enhancing translational efficiency (e.g. mTOR-signaling), ribosomal biogenesis and satellite cell content. Neither VDR-knockdown nor overexpression impacted muscle glucose uptake. Crucially, induction of VDR mRNA correlated with muscle hypertrophy in humans following long-term resistance exercise training, but not aspects of insulin sensitivity. The VDR autonomously regulates muscle mass, acting reciprocally to limit atrophy and promote hypertrophy.
Project description:Objective: Vitamin D receptor (VDR) mediates vitamin D activity. We examined whether VDR expression in excised melanoma tissues is associated with VDR gene (VDR) polymorphisms.Methods: We evaluated VDR protein expression (by monoclonal antibody immunostaining), melanoma characteristics, and carriage of VDR-FokI-rs2228570 (C>T),VDR-BsmI-rs1544410 (G>A),VDR-ApaI-rs7975232 (T>G), andVDR-TaqI-rs731236 (T>C) polymorphisms (by restriction fragment length polymorphism). Absence or presence of restriction site was denoted by a capital or lower letter, respectively: " F" and " f" for FokI, " B" and " b" for BsmI, " A" and " a" for ApaI, and " T" and " t" for TaqI endonuclease. Seventy-four Italian cutaneous primary melanomas (52.1±12.7 years old) were studied; 51.4% were stage I, 21.6% stage II, 13.5% stage III, and 13.5% stage IV melanomas. VDR expression was categorized as follows: 100% positivevs. <100%; over the median 20% (high VDR expression) vs. ≤20% (low VDR expression); absence vs. presence of VDR-expressing cells.Results: Stage I melanomas, Breslow thickness of <1.00 mm, level II Clark invasion, Aa heterozygous genotype, and AaTT combined genotype were more frequent in melanomas with high vs. low VDR expression. Combined genotypes BbAA, bbAa, AATt, BbAATt, and bbAaTT were more frequent in 100% vs. <100% VDR-expressing cells. Combined genotype AATT was more frequent in melanomas lacking VDR expression (odds ratio=14.5; P=0.025). VDR expression was not associated with metastasis, ulceration, mitosis >1, regression, tumor-infiltrating lymphocytes, tumoral infiltration of vascular tissues, additional skin and non-skin cancers, and melanoma familiarity.Conclusions: We highlighted that VDR polymorphisms can affect VDR expression in excised melanoma cells. Low VDR expression in AATT carriers is a new finding that merits further study. VDR expression possibly poses implications for vitamin D supplementation against melanoma. VDR expression and VDR genotype may become precise medicinal tools for melanoma in the future.
Project description:Objective. It has been stated that brain cancers are an increasingly serious issue in many parts of the world. The aim of our study was to determine a possible relationship between Vitamin D receptor (VDR) gene polymorphisms and the risk of glioma and meningioma. Methods. We investigated the VDR Taq-I and VDR Fok-I gene polymorphisms in 100 brain cancer patients (including 44 meningioma cases and 56 glioma cases) and 122 age-matched healthy control subjects. This study was performed by polymerase chain reaction-based restriction fragment length polymorphism (RF LP). Results. VDR Fok-I ff genotype was significantly increased in meningioma patients (15.9%) compared with controls (2.5%), and carriers of Fok-I ff genotype had a 6.47-fold increased risk for meningioma cases. There was no significant difference between patients and controls for VDR Taq-I genotypes and alleles. Conclusions. We suggest that VDR Fok-I genotypes might affect the development of meningioma.