Project description:To determine the signaling networks that are dysregulated in cisplatin-resistant non-small cell lung cancer, noncoding RNA expression data were obtained from, and compared between, the lung adenocarcinoma cell line, A549, and its cisplatin-resistant derivative, A549/CDDP.
Project description:To further understand the roles of miRNA during influenza A virus infection, we performed miRNA profiling in human alveolar adenocarcinoma cell lines, A549 cells, infected with influenza A virus A/Beijing/501/2009(H1N1) and A/goose/Jilin/hb/2003(H5N1).
Project description:To study miRNA expression profiles during highly pathogenic avian influenza virus infection, we conducted global miRNA expression profiling in human lung epithelial cells (A549) with or without H5N1 IAV infection. .
Project description:To determine the signaling networks that are dysregulated in cisplatin-resistant non-small cell lung cancer, noncoding RNA expression data were obtained from, and compared between, the lung adenocarcinoma cell line, A549, and its cisplatin-resistant derivative, A549/CDDP. Noncoding RNA expression data from a cisplatin-sensitive lung adenocarcinoma cancer cell line (A549) were collected and compared to noncoding RNA expression data from a cisplatin-resistant cell line (A549/CDDP). 3 independent experiments were completed for both the sensitive and resistant cell lines.
Project description:The goal of the study was to identify changes in transcriptome expressions upon treatment of A549 cell line samples with activated A2M.
Project description:Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare transcriptome profiling (RNA-seq) of wild type and MYOCD overexpression in human lung cancer cell line A549. Methods: mRNA profiles of wild type(WT) and MYOCD overexpression (MYOCD) human lung cancer cell line A549 were generated by deep sequencing, using Illumina GAIIx. The sequence reads that passed quality filters were analyzed at the transcript isoform level with two methods: Burrows–Wheeler Aligner (BWA) followed by ANOVA (ANOVA) and TopHat followed by Cufflinks. qRT–PCR validation was performed using TaqMan and SYBR.