Identification of molecular controls over corticospinal motor neuron segmental target specificity
Ontology highlight
ABSTRACT: Molecular mechanisms over differentiation and differential axonal targeting of distinct neuron subtypes in the cerebral cortex are beginning to be elucidated. These studies have focused on controls that specifically distinguish one subtype of neocortical projection neurons, e.g. corticospinal motor neurons (CSMN), from closely related corticothalamic projection neurons (CThPN) or intracortical callosal projection neurons (CPN). CSMN are located in layer V of the neocortex and make synaptic connections to motor output circuitry in the spinal cord and brainstem. CSMN axons form the corticospinal tract (CST), which is the major motor output pathway from the motor cortex and critically controls voluntary movement. CSMN somatotopically and precisely target specific segments along the rostrocaudal axis of the spinal cord, the molecular basis for which remains unknown. We used microarrays to examine gene expression differences between two CSMN subpopulations that target different levels of the spinal cord - CSMN-C (which extend axons to the brainstem and cervical spinal cord) and CSMN-L (which preferrrentially extend axons to the thoracic and lumbar spinal cord). We compared CSMN-C vs CSMN-L gene expression at 3 critical developmental time points (previously described in Arlotta et a., 2005)
ORGANISM(S): Mus musculus
PROVIDER: GSE77311 | GEO | 2018/12/31
REPOSITORIES: GEO
ACCESS DATA