Both maternally and paternally imprinted genes regulate seed development in rice
Ontology highlight
ABSTRACT: Genetic imprinting is an epigenetic phenomenon that describes unequal expression of paternal and maternal alleles of a gene in sexually reproducing organisms including mammals and flowering plants. The function of imprinted genes was rarely reported. We report genome-wide analysis of gene expression, DNA methylation, and small RNAs in the rice endosperm and functional tests of five imprinted genes in seed development using CRISPR/Cas9 editing technology. We identified 162 maternally expressed genes(MEGs) and 95 paternally expressed genes (PEGs) in the rice endosperm, which were associated with miniature inverted-repeat transposable elements, imprinted differentially methylated loci, and some 21-22-siRNAs and lncRNAs. Remarkably, one-third of MEGs and nearly half of PEGs were associated with grain-yield quantitative trait loci and enriched in the endosperm-expressed genes. Disrupting two MEGs increased the amount of small starch granules and reduced grain size, weight, and embryo size, while mutating three PEGs reduced starch content and seed fertility. Our data support both MEGs and PEGs in rice are required for starch and nutrient accumulation, mediating offspring fitness and optimal seed size. This imprinting strategy provides potential means for improving grain yield of rice and other cereal crops.
ORGANISM(S): Oryza sativa
PROVIDER: GSE77710 | GEO | 2017/02/04
REPOSITORIES: GEO
ACCESS DATA