Base J represses genes at the end of polycistronic gene clusters in Leishmania major by promoting RNAP II termination [small RNA-seq]
Ontology highlight
ABSTRACT: Base J and H3.V promote RNA Polymerase (RNAP) II termination within polycistronic gene clusters in the kinetoplastid species Trypanosoma brucei. Although base J has been shown to promote RNAP II termination in the related kinetoplastid species Leishmania major and Leishmania tarentolae, the role of H3.V was unclear. The effect of acute J loss on mRNA transcript abundance was also unknown. We find here that H3.V does not promote transcription termination in Leishmania major, but loss of H3.V does reduce J levels. The J loss in H3.V knockout cells is not enough to result in a termination defect, which we show is due to a threshold level of J that is sufficient to promote termination. Loss of J beyond that threshold results in termination defects. Further, the decreased J in H3.V knockout cells allowed greater reduction of J by dimethyloxalylglycine (DMOG), which inhibits J synthesis, compared to wild type cells treated with DMOG, and resulted in stronger defects in RNAP II termination and cell growth. By mRNA-seq we see largely upregulation of genes near the ends of gene clusters following J loss, indicating that J represses genes near termination sites. These findings reveal a conserved role of J in promoting termination prior to the end of polycistronic gene clusters in kinetoplastid parasites and suggest that the essential nature of J is related to its role in repressing genes by promoting termination.
ORGANISM(S): Leishmania major
PROVIDER: GSE77713 | GEO | 2016/09/26
SECONDARY ACCESSION(S): PRJNA311271
REPOSITORIES: GEO
ACCESS DATA