In vitro proteomic expression changes in Ewing sarcoma cell lines after mTOR blockade
Ontology highlight
ABSTRACT: Ewing Sarcoma is caused by a pathognomonic genomic translocation that places an N-terminal EWSR1 gene in approximation with one of several ETS genes (typically FLI1). This aberration, in turn, alters the transcriptional regulation of more than five hundred genes and perturbs a number of critical pathways that promote oncogenesis, cell growth, invasion, and metastasis. Among them, translocation-mediated up-regulation of the insulin-like growth factor receptor 1 (IGF-1R) and mammalian target of rapamycin (mTOR) are of particular importance since they work in concert to facilitate IGF-1R expression and ligand-induced activation, respectively, of proven importance in ES transformation. When used as a single agent in Ewing sarcoma therapy, IGF-1R or mTOR inhibition leads to rapid counter-regulatory effects that blunt the intended therapeutic purpose. Therefore, identify new mechanisms of resistance that are used by Ewing sarcoma to evade cell death to single-agent mTOR inhibition might suggest a number of therapeutic combinations that could improve its clinical activity.
ORGANISM(S): Homo sapiens
PROVIDER: GSE78122 | GEO | 2016/06/01
SECONDARY ACCESSION(S): PRJNA312659
REPOSITORIES: GEO
ACCESS DATA