ASSISTED REPRODUCTIVE TECHNOLOGIES ALTER DNA METHYLATION PROFILES IN BLOODSPOTS OF NEWBORN INFANTS
Ontology highlight
ABSTRACT: The Illumina Infinium HumanMethylation 450k Beadchip was employed to study the impact of in-vitro fertilization on DNA methylation in peripheral blood of infants. Using a total of 137 Michigan newborns born through IVF using fresh embryo transfer, IVF using cryopreserved embryo transfer, Intrauterine Insemination, or unassisted conception, DNA from archived Guthrie cards was assayed for methylation profiles.
Project description:Genome wide DNA methylation profiling of whole blood at birth (Guthrie blood spots) and adulthood of individuals conceived by assisted reproductive technology (ART) and matched non-ART controls. The Illumina Infinium MethylationEPIC BeadChip was used to obtain DNA methylation profiles across approximately 850,000 CpGs in guthrie cards and whole adult blood.
Project description:A major concern in common disease epigenomics is distinguishing causal from consequential epigenetic variation. One means of addressing this issue is to identify the temporal origins of epigenetic variants via longitudinal analyses. However, prospective birth-cohort studies are expensive and time-consuming. Here we report DNA methylomics of archived Guthrie cards for the retrospective longitudinal analyses of in utero-derived DNA methylation variation. We first validate two methodologies for generating comprehensive DNA methylomes from Guthrie cards. Then, using an integrated epigenomic/genomic analysis of Guthrie cards and follow-up samplings, we identify inter-individual DNA methylation variation that is present both at birth and three years later. These findings suggest that disease-relevant epigenetic variation could be detected at birth i.e. before overt clinical disease. Guthrie card methylomics offers a potentially powerful and cost-effective strategy for studying the dynamics of inter-individual epigenomic variation in a range of common human diseases.
Project description:A major concern in common disease epigenomics is distinguishing causal from consequential epigenetic variation. One means of addressing this issue is to identify the temporal origins of epigenetic variants via longitudinal analyses. However, prospective birth-cohort studies are expensive and time-consuming. Here we report DNA methylomics of archived Guthrie cards for the retrospective longitudinal analyses of in utero-derived DNA methylation variation. We first validate two methodologies for generating comprehensive DNA methylomes from Guthrie cards. Then, using an integrated epigenomic/genomic analysis of Guthrie cards and follow-up samplings, we identify inter-individual DNA methylation variation that is present both at birth and three years later. These findings suggest that disease-relevant epigenetic variation could be detected at birth i.e. before overt clinical disease. Guthrie card methylomics offers a potentially powerful and cost-effective strategy for studying the dynamics of inter-individual epigenomic variation in a range of common human diseases.
Project description:A major concern in common disease epigenomics is distinguishing causal from consequential epigenetic variation. One means of addressing this issue is to identify the temporal origins of epigenetic variants via longitudinal analyses. However, prospective birth-cohort studies are expensive and time-consuming. Here we report DNA methylomics of archived Guthrie cards for the retrospective longitudinal analyses of in utero-derived DNA methylation variation. We first validate two methodologies for generating comprehensive DNA methylomes from Guthrie cards. Then, using an integrated epigenomic/genomic analysis of Guthrie cards and follow-up samplings, we identify inter-individual DNA methylation variation that is present both at birth and three years later. These findings suggest that disease-relevant epigenetic variation could be detected at birth i.e. before overt clinical disease. Guthrie card methylomics offers a potentially powerful and cost-effective strategy for studying the dynamics of inter-individual epigenomic variation in a range of common human diseases. Bisulphite converted DNA was hybridised to the Illumina Infinium 450k Human Methylation Beadchip
Project description:A major concern in common disease epigenomics is distinguishing causal from consequential epigenetic variation. One means of addressing this issue is to identify the temporal origins of epigenetic variants via longitudinal analyses. However, prospective birth-cohort studies are expensive and time-consuming. Here we report DNA methylomics of archived Guthrie cards for the retrospective longitudinal analyses of in utero-derived DNA methylation variation. We first validate two methodologies for generating comprehensive DNA methylomes from Guthrie cards. Then, using an integrated epigenomic/genomic analysis of Guthrie cards and follow-up samplings, we identify inter-individual DNA methylation variation that is present both at birth and three years later. These findings suggest that disease-relevant epigenetic variation could be detected at birth i.e. before overt clinical disease. Guthrie card methylomics offers a potentially powerful and cost-effective strategy for studying the dynamics of inter-individual epigenomic variation in a range of common human diseases. Bisulphite converted DNA was sequenced
Project description:By comparing the difference in whole transcriptome of uterine fluid exosomes on embryo transfer day between pregnant and unpregnant groups during IVF cycles, novel biomarkers that may predict embryo implantation were identified. This prospective cohort study included78 cases with infertility who underwent routine in vitro fertilization(IVF) and fresh embryo transfer; they were divided into pregnant group and unpregnant group.
Project description:By comparing the difference in whole transcriptome of uterine fluid exosomes on embryo transfer day between pregnant and unpregnant groups during IVF cycles, novel biomarkers that may predict embryo implantation were identified. This prospective cohort study included78 cases with infertility who underwent routine in vitro fertilization(IVF) and fresh embryo transfer; they were divided into pregnant group and unpregnant group.
Project description:Implantation is crucial for placental development whose quality will directly impact fetal growth and pregnancy success with possible consequences on post-natal health. We postulated that early perturbations of the conceptus-maternal environment communication may alter the endometrium physiology that could account for the final reproductive outcome. Using cattle as an animal model, we compared gene expression profiles of the endometrial caruncular and intercaruncular areas at implantation in three types of pregnancies, namely artificial insemination (AI), in vitro fertilization with embryo transfer (IVF-ET) or somatic cell nuclear transfer (SCNT). Less than 35% of the differentially regulated genes were found to be common between AI, IVF-ET, and SCNT conditions. Compared to AI, numerous biological functions and several canonical pathways and genes were found to be significantly affected in IVF-ET or SCNT, with a major impact on metabolism and immune function in SCNT. Our data show that endometrium can fine-tune its physiology and could be considered as a biological sensor in response to pregnancy manipulations. Determining the limits of the endometrial plasticity should bring new insights on the contribution of the maternal compartment to the issue of pregnancy. Keywords: Fluorescence Microarray 30 samples
Project description:ART is associated with abnormalities in DNA methylation and a higher incidence of adverse pregnancy outcomes in humans and mice. However, which specific exposure, among the interventions utilized during ART, is responsible for these outcomes remains unknown. Embryo transfer after vitrification-thaw (frozen ET) into a maternal hormonal environment more closely resembling unassisted conception is increasingly utilized clinically, but reports suggest a higher incidence of large for gestational age (LGA) infants, with male infants potentially more affected than female infants.
Project description:Implantation is crucial for placental development which directly impacts fetal growth and pregnancy success with possible consequences on post-natal health. We postulated that early perturbations of the conceptus-maternal environment communication may alter the endometrium physiology that could account for the final reproductive outcome. Using cattle as an animal model, we compared gene expression profiles of the endometrial caruncular and intercaruncular areas during the critical period of implantation in three types of pregnancies: artificial insemination (AI), in vitro fertilization with embryo transfer (IVF-ET) or somatic cell nuclear transfer (SCNT). Less than 35% of the differentially expressed genes were found to be common between AI, IVF-ET, and SCNT conditions. Compared to AI, numerous biological functions and several canonical pathways and genes were found to be significantly affected in IVF-ET or SCNT, with a major impact on metabolism and immune function in SCNT. Our data show that the endometrium can fine-tune its physiology and could be considered as a biological sensor in response to pregnancy manipulations. Determining the limits of the endometrial plasticity should bring new insights on the contribution of the maternal compartment to the pregnancy outlet. Keywords: Fluorescence Microarray - Dye switch loop design 44 samples