Genomic comparison in Enteroheamorragic E. coli O157 and non-O157 serotypes by comparative genomic hybridization.
Ontology highlight
ABSTRACT: Background: Enterohemorrhagic Escherichia coli (EHEC) O157 causes severe food-bone illness in humans. The chromosome of O157 consists of 4.1-Mb backbone sequences shared by benign E. coli K-12, and 1.4-Mb O157-specific sequences encoding many virulence determinants such as Shiga toxin genes (stxs) and the locus of enterocyte effacement (LEE). Non-O157 EHECs belonging to clonal lineages distinct from O157 also cause similar illness in humans. According to the parallel evolution model, they have independently acquired the major virulence determinants, stxs and LEE. However, the genomic differences between O157 and non-O157 EHECs have not yet systematically been analyzed. Results: By using the microarray and Whole Genome PCR scanning analyses, we performed a whole genome comparison of 20 EHEC strains of O26, O111, and O103 serotypes with O157. In non-O157 EHEC strains, although genome sizes were similar with or rather larger than O157 and the backbone regions were well conserved, O157-specific regions were very poorly conserved. Only around 20% of the O157-specific genes were fully conserved in each non-O157 serotype. However, the non-O157 EHECs contained a significant number of virulence genes found on prophages and plasmids in O157, and also multiple prophages similar but significantly divergent from those in O157. Conclusion: Although O157 and non-O157 EHECs have independently acquired a huge amount of serotype- or strain-specific genes by lateral gene transfer, they share an unexpectedly large number of virulence genes. Independent infections of similar but distinct bacteriophages carrying these virulence determinants appear to be involved in the parallel evolution of EHEC. Keywords: comparative genomic hybridization, CGH
ORGANISM(S): Escherichia coli
PROVIDER: GSE7931 | GEO | 2007/08/23
SECONDARY ACCESSION(S): PRJNA100093
REPOSITORIES: GEO
ACCESS DATA