Project description:Prochlorococcus is found throughout the euphotic zone in the oligotrophic open ocean. Deep mixing and sinking in aggregates or while attached to particles can, however, transport cells below this sunlit zone, depriving them of light for extended periods of time and influencing their circulation via ocean currents. Viability of these cells over extended periods of darkness could shape the ecology and evolution of the Prochlorococcus collective. We have shown that when co-cultured with a heterotrophic microbe and subjected to repeated periods of extended darkness, Prochlorococcus cells develop a heritable dark-tolerant phenotype – through an apparent epigenetic mechanism – such that they survive longer periods of darkness. Here we examine this adaptation at the level of physiology and metabolism in co-cultures of dark-tolerant and parent strains of Prochlorococcus, each grown with the heterotroph Alteromonas under diel light:dark conditions. The relative abundance of Alteromonas is higher in dark-tolerant than parental co-cultures, while dark tolerant Prochlorococcus cells are also larger, contain less chlorophyll, and are less synchronized to the light:dark cycle. Meta-transcriptome analysis of the cultures further suggests that dark-tolerant co-cultures undergo a coupled shift in which Prochlorococcus uses more organic carbon and less photosynthesis, and Alteromonas uses more organic acids and fewer sugars. Collectively, the data suggest that dark adaptation involves a loosening of the coupling between Prochlorococcus metabolism and the light:dark cycle and a strengthening of the coupling between the carbon metabolism of Prochlorococcus and Alteromonas.
Project description:Prochlorococcus contributes significantly to ocean primary productivity. The link between primary productivity and iron in specific ocean regions is well established and iron limitation of Prochlorococcus cell division rates in these regions has been shown. However, the extent of ecotypic variation in iron metabolism among Prochlorococcus and the molecular basis for differences is not understood. Here, we examine the growth and transcriptional response of Prochlorococcus strains, MED4 and MIT9313, to changing iron concentrations. During steady state, MIT9313 sustains growth at an order-of-magnitude lower iron concentration than MED4. To explore this difference, we measured the whole-genome transcriptional response of each strain to abrupt iron starvation and rescue. Only four of the 1159 orthologs of MED4 and MIT9313 were differentially expressed in response to iron in both strains. However, in each strain, the expression of over a hundred additional genes changed, many of which are in labile genomic regions, suggesting a role for lateral gene transfer in establishing diversity of iron metabolism among Prochlorococcus. Furthermore, we found that MED4 lacks three genes near the iron-deficiency-induced gene (idiA) that are present and induced by iron stress in MIT9313. These genes are interesting targets for studying the adaptation of natural Prochlorococcus assemblages to local iron conditions as they show more diversity than other genomic regions in environmental metagenomic databases.
Project description:Carbon fixation plays a central role in determining cellular redox poise, increasingly understood to be a key parameter in cyanobacterial physiology. In the cyanobacterium Prochlorococcus--—the most abundant phototroph in the oligotrophic oceans--—the carbon-concentrating mechanism (CCM) is reduced to the bare essentials. Given the ability of Prochlorococcus populations to grow under a wide range of oxygen concentrations in the ocean, we wondered how carbon and oxygen physiology intersect in this minimal phototroph. We monitored genome-wide transcription in cells shocked with acute limitation of CO2, O2, or both. O2 limitation produced much smaller transcriptional changes than the broad suppression seen under CO2 limitation and CO2/O2 co-limitation. Strikingly, the transcriptional responses evoked by both CO2 limitation conditions were initially similar to that previously seen in high light stress, but at later timepoints we observed O2-dependent recovery of photosynthesis-related transcripts. These results suggest that oxygen plays a protective role in Prochlorococcus when carbon fixation is not a sufficient sink for light energy.
Project description:Cyanobacteria are highly abundant in the oceans where they are constantly exposed to lytic viruses. Some viruses are restricted to a narrow host range while others infect a broad range of hosts. It is currently unknown whether broad-host range phages employ the same infection program, or regulate their program in a host-specific manner to accommodate for the different genetic makeup and defense systems of each host. Here we used a combination of microarray and RNA-seq analyses to investigate the interaction of three phylogentically distinct Synechococcus strains, WH7803, WH8102, and WH8109, with the broad-host range T4-like myovirus, Syn9, during infection. Strikingly, we found that the phage led a nearly identical expression program in the three hosts despite considerable differences in host gene content. On the other hand, host responses to infection involved mainly host-specific genes, suggesting variable attempts at defense against infection. A large number of responsive host genes were located in hypervariable genomic islands, substantiating genomic islands as a major axis of phage-bacteria interactions in cyanobacteria. Furthermore, transcriptome analyses and experimental determination of the complete phage promoter map revealed three temporally regulated modules and not two as previously thought for cyanophages. In contrast to T4, an extensive, previously unknown regulatory motif drives expression of early genes and host-like promoters drive middle-gene expression. These promoters are highly conserved among cyanophages and host-like middle promoters extend to other T4-like phages, indicating that the well-known mode of regulation in T4 is not the rule among the broad family of T4-like phages. We investigated the infection process and transcriptional program of the P-TIM40 cyanophage during infection of a Prochlorococcus NATL2A host. The results are discussed in conjunction with results obtained from the infection process for the Syn9 cyanophage in three different Synechococcus hosts: WH7803 (Dufresne et al. 2008), WH8102 (Palenik et al. 2003) and WH8109 (sequenced as part of this study).
Project description:We examine how the transcriptome of Prochlorococcus strain NATL2A changes in response to extended light deprivation, both when grown alone and in the presence of a naturally co-occurring heterotroph, Alteromonas macleodii MIT1002.
Project description:Carbon fixation plays a central role in determining cellular redox poise, increasingly understood to be a key parameter in cyanobacterial physiology. In the cyanobacterium Prochlorococcus--—the most abundant phototroph in the oligotrophic oceans--—the carbon-concentrating mechanism (CCM) is reduced to the bare essentials. Given the ability of Prochlorococcus populations to grow under a wide range of oxygen concentrations in the ocean, we wondered how carbon and oxygen physiology intersect in this minimal phototroph. We monitored genome-wide transcription in cells shocked with acute limitation of CO2, O2, or both. O2 limitation produced much smaller transcriptional changes than the broad suppression seen under CO2 limitation and CO2/O2 co-limitation. Strikingly, the transcriptional responses evoked by both CO2 limitation conditions were initially similar to that previously seen in high light stress, but at later timepoints we observed O2-dependent recovery of photosynthesis-related transcripts. These results suggest that oxygen plays a protective role in Prochlorococcus when carbon fixation is not a sufficient sink for light energy. Two biological replicates of timecourses under four conditions: medium bubbled with air (control) or three experimental gases (low CO2; low O2; or low CO2 and low O2)
Project description:We examine how the transcriptome of Prochlorococcus strain NATL2A changes in the presence of a naturally co-occurring heterotroph, Alteromonas macleodii MIT1002. Significant changes in the Prochlorococcus transcriptome were evident within six hours of co-culture, with groups of transcripts changing in different temporal waves. Many transcriptional changes persisted throughout the 48-hour experiment, indicating that the presence of the heterotroph affected a stable shift in Prochlorococcus physiology. These initial transcriptome changes largely correspond to reduced stress conditions within Prochlorococcus, as inferred from decreases in relative abundance for transcripts encoding DNA repair enzymes and many members of the ‘high-light inducible’ family of stress response proteins. Notable changes were also seen in transcripts encoding components of the photosynthetic apparatus (particularly an increase in PSI subunits and chlorophyll synthesis enzymes), ribosomal proteins and biosynthetic enzymes. Changes in secretion-related proteins and transporters also highlight the potential for metabolic exchange between the two strains.
Project description:We examine how the transcriptome of Prochlorococcus strain NATL2A changes in the presence of a naturally co-occurring heterotroph, Alteromonas macleodii MIT1002. Significant changes in the Prochlorococcus transcriptome were evident within six hours of co-culture, with groups of transcripts changing in different temporal waves. Many transcriptional changes persisted throughout the 48-hour experiment, indicating that the presence of the heterotroph affected a stable shift in Prochlorococcus physiology. These initial transcriptome changes largely correspond to reduced stress conditions within Prochlorococcus, as inferred from decreases in relative abundance for transcripts encoding DNA repair enzymes and many members of the âhigh-light inducibleâ family of stress response proteins. Notable changes were also seen in transcripts encoding components of the photosynthetic apparatus (particularly an increase in PSI subunits and chlorophyll synthesis enzymes), ribosomal proteins and biosynthetic enzymes. Changes in secretion-related proteins and transporters also highlight the potential for metabolic exchange between the two strains. At each of 7 timepoints, samples from 3 biological replicate co-cultures are compared to 3 biological replicate axenic Prochlorococcus cultures that serve as a control.