Rocaglates convert DEAD-box protein eIF4A into a sequence-selective translational repressor
Ontology highlight
ABSTRACT: Rocaglamide A (RocA) typifies a class of protein synthesis inhibitors that selectively kill aneuploid tumor cells and repress translation of specific mRNAs. RocA targets eukaryotic initiation factor 4A (eIF4A), an ATP-dependent DEAD-box RNA helicase; its mRNA selectivity is proposed to reflect highly structured 5′ UTRs that depend strongly on eIF4A-mediated unwinding. However, rocaglate treatment may not phenocopy the loss of eIF4A activity, as these drugs actually increase the affinity between eIF4A and RNA. Here, we show that secondary structure in 5′ UTRs is only a minor determinant for RocA selectivity and RocA does not repress translation by reducing eIF4A availability. Rather, in vitro and in cells, RocA specifically clamps eIF4A onto polypurine sequences in an ATP-independent manner. This artificially clamped eIF4A blocks 43S scanning, leading to premature, upstream translation initiation and reducing protein expression from transcripts bearing the RocA-eIF4A target sequence. In elucidating the mechanism of selective translation repression by this lead anti-cancer compound, we provide an example of a drug stabilizing sequence-selective RNA-protein interactions.
ORGANISM(S): synthetic construct Homo sapiens
PROVIDER: GSE79392 | GEO | 2016/06/15
SECONDARY ACCESSION(S): PRJNA315688
REPOSITORIES: GEO
ACCESS DATA