Integrated transcriptomics and metabolomics profiling delineates early molecular correlates of immunity to herpes zoster vaccination in humans
Ontology highlight
ABSTRACT: The goal of this study is to characterize the human immune responses to the live attenuated Herpes zoster vaccine Zostavax, to understand the molecular and cellular mechanisms that lead to antibody production and T cell induction, and to understand the difference between young and elderly healthy adults. The overall data collection included antigen specific assays, flow cytometric profiling of innate and adaptive cell populations, measurement of serum cytokines, and transcriptomic and metabolomics signatures. Zostavax induced robust antigen-specific antibody responses, and significant T cell responses. A number of gene pathways were upregulated after vaccination. Using our previously developed blood transcription modules, we also identified transcriptomic correlates to antibody response. Furthermore, this study revealed strong association between PBMC transcriptomics and plasma metabolomics. Integrative analysis of orthogonal datasets from metabolomics, transcriptomic and immune profiling facilitated a temporal reconstruction of Zostavax induced biological networks culminating in antibody responses , and the delineation of novel molecular correlates of vaccine immunity.
ORGANISM(S): Homo sapiens
PROVIDER: GSE79396 | GEO | 2017/08/18
SECONDARY ACCESSION(S): PRJNA315699
REPOSITORIES: GEO
ACCESS DATA