Arabidopsis Messenger RNA N6-methyladenosine Demethylation Regulates Plant Development
Ontology highlight
ABSTRACT: N6-methyladenosine (m6A) is the most abundant internal modification in the messenger RNA (mRNA) of all higher eukaryotes. This modification has been shown to be reversible in mammals; it is installed by a methyltransferase heterodimer complex of METTL3 and METTL14 bound with WTAP, and reversed by iron(II)- and α-ketoglutarate-dependent demethylases FTO and ALKBH5. This modification exhibits significant functional roles in various biological processes. The m6A modification as a RNA mark is recognized by reader proteins, such as YTH domain family proteins and HNRNPA2B1; m6A can also act as a structure switch to affect RNA-protein interactions for biological regulation. In Arabidopsis thaliana, the methyltransferase subunit MTA (the plant orthologue of human METTL3, encoded by At4g10760) was well characterized and FIP37 (the plant orthologue of human WTAP) was first identified as the interacting partner of MTA. Here we report the discovery and characterization of reversible m6A methylation mediated by AtALKBH10B (encoded by At4g02940) in A. thaliana, and noticeable roles of this RNA demethylase in affecting plant development and floral transition. Our findings reveal potential broad functions of reversible mRNA methylation in plants.
Project description:N6-methyladenosine (m6A) is the most abundant internal modification in the messenger RNA (mRNA) of all higher eukaryotes. This modification has been shown to be reversible in mammals; it is installed by a methyltransferase heterodimer complex of METTL3 and METTL14 bound with WTAP, and reversed by iron(II)- and α-ketoglutarate-dependent demethylases FTO and ALKBH5. This modification exhibits significant functional roles in various biological processes. The m6A modification as a RNA mark is recognized by reader proteins, such as YTH domain family proteins and HNRNPA2B1; m6A can also act as a structure switch to affect RNA-protein interactions for biological regulation. In Arabidopsis thaliana, the methyltransferase subunit MTA (the plant orthologue of human METTL3, encoded by At4g10760) was well characterized and FIP37 (the plant orthologue of human WTAP) was first identified as the interacting partner of MTA. Here we report the discovery and characterization of reversible m6A methylation mediated by AtALKBH10B (encoded by At4g02940) in A. thaliana, and noticeable roles of this RNA demethylase in affecting plant development and floral transition. Our findings reveal potential broad functions of reversible mRNA methylation in plants. m6A peaks were identified from wild type Columbia-0 and atalkbh10b-1 mutant in two biological replicates
Project description:N6-methyladenosine (m6A) is the most prevalent internal modification found in mammalian messenger and non-coding RNAs. The discoveries of functionally significant demethylases that reverse this methylation as well as the recently revealed m6A distributions in mammalian transcriptomes strongly indicate regulatory functions of this modification. Here we report the identification and characterization of the mammalian nuclear RNA N6-adenosine methyltransferase core (RNMTC) complex. Besides METTL3, a methyltransferase which was the only known component of RNMTC in the past, we discovered that a previously uncharacterized methyltransferase, METTL14, exhibits a N6-adenosine methyltransferase activity higher than METTL3. Together with WTAP, the third component that dramatically affects the cellular m6A level, these three proteins form the core complex that orchestrates m6A deposition on mammalian nuclear RNA. Biochemistry assays, imaging experiments, as well as transcriptome-wide analyses of the binding sites and their effects on m6A methylation support methylation function and reveal new insights of RNMTC. PAR-CLIP and m6A-seq in HeLa cells
Project description:SETD2 is the specific methyltransferase of H3K36me3, while METTL3, METTL14 and WTAP are the components of m6A methyltransferase complex. To understand the global effect of H3K36me3 on m6A modification, we compared the m6A profiling in SETD2 and METTL3, METTL14 or WTAP knockdown HepG2 cells, and found depletion of H3K36me3 by SETD2 silencing globally reduced m6A in human transcriptome. What’s more, most of the SETD2-dependent hypomethylation sites also responded to knockdown of METTL3, METTL14, or WTAP.
Project description:N6-methyladenosine (m6A) methylation of mRNA by the methyltransferase complex (MTC), with core components including METTL3-METTL14 heterodimers and Wilms’ tumor 1-associated protein (WTAP), contributes to breast tumorigenesis, but the mechanism of MTC assembly remains elusive. Here, we identify a novel cleaved form METTL3a (residues 239-580 of METTL3), that is highly expressed in breast cancer. Furthermore, we find that both METTL3a and full-length METTL3 are required for MTC assembly, RNA m6A deposition, as well as cancer cell proliferation. Mechanistically, we find that METTL3a is required for METTL3-METTL3 interaction, which is a prerequisite step for recruitment of WTAP in MTC assembly. Analysis of m6A sequencing data shows that depletion of METTL3a globally disrupts m6A methylation, and METTL3a mediates mTOR activation via m6A-mediated suppression of TMEM127 expression. Consequently, we find that METTL3 cleavage is mediated by proteasome in an mTOR-dependent manner, revealing positive regulatory feedback between METTL3a and mTOR signaling. Our findings reveal METTL3a as an important component for MTC assembly, and suggest the METTL3a-mTOR axis as a potential therapeutic target for breast cancer.
Project description:N6-methyladenosine (m6A) is a common modification of mRNA, with potential roles in fine-tuning the RNA life cycle, but little is known about the pathways regulating this process and its physiological role. Here, we used mass-spectrometry to identify a dense network of proteins physically interacting with METTL3, a core component of the methyltransferase complex, and show that two of them, WTAP and KIAA1429, are required for methylation. Combining high resolution m6A-Seq with knockdown of WTAP allowed us to define accurate maps, at near single-nucleotide resolution, of sites of mRNA methylation across four dynamic programs in human and mouse, including development, differentiation, reprogramming and immune response. Internal WTAP-dependent methylation sites were largely static across the different surveyed conditions and present in the majority of mRNAs. However, methylations were found at much lower levels within highly expressed mRNAs, and methylation is inversely correlated with mRNA stability, consistent with a role in establishing an overall basal, cell-type invariant, distribution of degradation rates. In addition, we identify thousands of WTAP-independent methylation sites at transcription initiation sites, forming part of the mRNA cap structure. We show that the methylations occur at the first transcribed nucleotide, and find that thousands of transcripts are present in different isoforms differing in the methylation state of the first transcribed nucleotide, a previously unappreciated complexity of the transcriptome. Together, our data sheds new light on the proteomic and transcriptional underpinnings of this epitranscriptomic modification in mammals. Examination of m6A methylation across different knockdowns using shRNAs in mouse embryonic fibroblasts, in embyronic and adult brains, and in dendritic cell stimulated with LPS.
Project description:N6-methyladenosine (m6A) is a common modification of mRNA, with potential roles in fine-tuning the RNA life cycle, but little is known about the pathways regulating this process and its physiological role. Here, we used mass-spectrometry to identify a dense network of proteins physically interacting with METTL3, a core component of the methyltransferase complex, and show that two of them, WTAP and KIAA1429, are required for methylation. Combining high resolution m6A-Seq with knockdown of WTAP allowed us to define accurate maps, at near single-nucleotide resolution, of sites of mRNA methylation across four dynamic programs in human and mouse, including development, differentiation, reprogramming and immune response. Internal WTAP-dependent methylation sites were largely static across the different surveyed conditions and present in the majority of mRNAs. However, methylations were found at much lower levels within highly expressed mRNAs, and methylation is inversely correlated with mRNA stability, consistent with a role in establishing an overall basal, cell-type invariant, distribution of degradation rates. In addition, we identify thousands of WTAP-independent methylation sites at transcription initiation sites, forming part of the mRNA cap structure. We show that the methylations occur at the first transcribed nucleotide, and find that thousands of transcripts are present in different isoforms differing in the methylation state of the first transcribed nucleotide, a previously unappreciated complexity of the transcriptome. Together, our data sheds new light on the proteomic and transcriptional underpinnings of this epitranscriptomic modification in mammals. Examination of m6A methylation in human Hek293 and A549 cell lines, in human embryonic stem cells (ESCs) undergoing differentiation to neural progenitor cells (NPCs), in OKMS inducible fibroblasts reprogrammed into iPSC, and upon knockdown of factors using siRNAs or shRNAs.
Project description:Methyltransferase-like 3 (METTL3) is the m6A methyltransferase which binds to METTL14 and wilms tumour 1-associated protein (WTAP) to form a complex catalyzing the m6A modification, the most abundant epitranscriptomic modification in eukaryotic mRNAs. And it has been demonstrated that m6A methylation mediated by METTL3 to be essential for inflammatory responses. To identify the messenger RNA (mRNA) profile in the primary myocardial cells that were treated with lipopolysaccharide (LPS) and/or small interference siMETTL3, six groups of primary myocardial cells were used for analysis.
Project description:Here we determine the map of RNA methylation (m6A) in mouse embrionic stem cells, and Mettl3 knock out cells Examination of m6A modification sites on the transcriptome of mouse Embryonic stem cells and Embryonic Mettl3 knock out cells, using a m6A specific antibody.
Project description:N6-methyladenosine (m6A) is the most abundant mRNA modification in mammalian cells, mediated co-transcriptionally by a methyltransferase ‘writer’ complex containing METTL3 as the S-adenosyl methionine (SAM)-binding subunit as well as adaptors such WTAP and ZC3H13
Project description:N6-methyladenosine (m6A) is the most abundant mRNA modification in mammalian cells, mediated co-transcriptionally by a methyltransferase ‘writer’ complex containing METTL3 as the S-adenosyl methionine (SAM)-binding subunit as well as adaptors such WTAP and ZC3H13.