Project description:In this article we inspect the roles and functions of the methyl-CpG-binding domain protein 3 (MBD3) in human malignant glioma, to assess its potential as an epigenetic biomarker for prognosis. The regulatory effects of MBD3 on glioma transcriptome were first profiled by high-throughput microarray. Our results indicate that MBD3 is involved in both transcriptional activation and repression. Furthermore, MBD3 fine-controls a spectrum of proteins critical for cellular metabolism and proliferation, thereby contributing to an exquisite anti-glioma network. Specifically, the expression of MHC class II molecules was found to positively correlate with MBD3, which provides new insight into the immune escape of gliomagenesis. In addition, MBD3 participates in constraining a number of oncogenic non-coding RNAs whose over-activation could drive cells into excessive growth and higher malignancy. Having followed up a pilot cohort, we noted that the survival of malignant glioma patients was proportional to the content of MBD3 and 5-hydroxymethylcytosine (5hmC) in their tumor cells. The progression-free survival (PFS) and overall survival (OS) were relatively poor for patients with lower amount of MBD3 and 5hmC in the tissue biopsies. Taken together, this work enriches our understanding of the mechanistic involvement of MBD3 in malignant glioma.
Project description:A comprehensive study is conducted to inspect the role and function of methyl-CpG-binding domain protein 3 (MBD3) in human malignant glioma, as well as to test its potential as a novel prognostic biomarker. Using whole-genome microarray for transcriptome, the MBD3-mediated epigenetic regulation in glioma was profiled.
Project description:A comprehensive study is conducted to inspect the role and function of methyl-CpG-binding domain protein 3 (MBD3) in human malignant glioma, as well as to test its potential as a novel prognostic biomarker. Using whole-genome microarray for transcriptome, the MBD3-mediated epigenetic regulation in glioma was profiled.