Project description:We performed mRNA-seq from hand-dissected fat body tissue from 68hr (after egg laying, AEL) and 92hr AEL Drosophila melanogaster larvae. Fat body was dissected from wild-type (OrR) males and testes were removed. We examined gene expression genome-wide with particular focus on genes in the underreplicated regions in the fat body.
Project description:We analyzed Origin Recognition Complex Subunit 2 (ORC2) ChIP-seq from hand-dissected fat body tissue from 68hr (after egg laying, AEL), 92hr AEL, and late-third wandering Drosophila melanogaster larvae. Fat body was dissected from wild-type (OrR) males and testes were removed. We examined ORC2 binding genome-wide with particular focus on the underreplicated regions in the fat body.
Project description:We characterized insulin receptor (InR)-dependent gene expression in the Drosophila fat body using transgenic RNAi. Chronic knockdown of InR in the fat body was elicited via (r4-GAL4, UAS-InRi) and RNA-seq was used to identify potential target genes.
Project description:We report the transcriptome profile of one sequenced sample of mRNA isolated from pooled (20 from each genotype) abdomen fly extracts enriched in fat body content of fat body-specific Sdc RNAi knockdown and control flies Abdominal fat body mRNA profiles of 4-6-day old control and fat body-specific Sdc RNAi knockdown were generated by deep sequencing using Illumina HiSeq 2500
Project description:We report the transcriptome profile of one sequenced sample of mRNA isolated from pooled (20 from each genotype) abdomen fly extracts enriched in fat body content of fat body-specific Sdc RNAi knockdown and control flies
Project description:We compared four transcription factor knockdowns using transgenic RNAi expressed in the larval fat body. FOXO, Tfb1, p53, and Stat92E-dependent gene expression in the Drosophila fat body was quantified on control and high-sugar diets in order to generate expression profiles via RNA-seq. These expression data were used to build a gene regulatory network to predict novel roles for these and other genes during caloric overload.
Project description:We characterized constitutively active insulin receptor (InR)-dependent gene expression in the Drosophila fat body. Transient activation of InR was elicited via heat shock and RNA-seq was used to identify potential target genes.
Project description:The conserved Mef2 transcription factor is a major regulator of gene expression and differentiation. Recent genomic studies have identified a large number of mef2-regulated target genes with distinct temporal expression profiles during Drosophila myogenesis. However, the question remains as to how a single transcription factor can control such diverse patterns of gene expression. The aim of this project was to investigate whether there are genes with different mef2-requirements for their expression during muscle differentiation in vivo during the development of Drosophila melanogaster. Keywords: allelic series comparison