Expression data from 29-day old Arabidopsis plants
Ontology highlight
ABSTRACT: Metal oxide engineered nanoparticles, which are widely used in diverse applications, are known to impact terrestrial plants. These nanoparticles have a potential to induce changes in plant tissue transcriptomes, and thereby the productivity. Here we looked at how the two commonly used nanoparticles, nano-titania (TiO2) and nano-ceria (CeO2) can impact the underlying mechanisms associated plant growth at genome level. We used microarrays to detail the global programme of gene expression underlying various physiological processes associated with growth and development, and identified distinct classes of up-regulated genes during this process.
Project description:Metal oxide engineered nanoparticles, which are widely used in diverse applications, are known to impact terrestrial plants. These nanoparticles have a potential to induce changes in plant tissue transcriptomes, and thereby the productivity. Here we looked at how the two commonly used nanoparticles, nano-titania (TiO2) and nano-ceria (CeO2) can impact the underlying mechanisms associated plant growth at genome level. We used microarrays to detail the global programme of gene expression underlying various physiological processes associated with growth and development, and identified distinct classes of up-regulated genes during this process. 29 day old Arabidopsis plants were selected for RNA extraction from roots and rosette leaves, followed by hybridization on Affymetrix microarrays. Arabidopsis plants were exposed twice during the germination stage (Days 0 and 4), and once during the primary rosette stage (Day 17), to 500mg/L concentration of nano-titania and nano-ceria, followed by extraction of RNA from 29-day old plant tissues (roots and rosette leaves) for Microarray analysis. 0.1mM KCl was used as control for nano-titania, whereas sterilized millipore water was used as control for nano-ceria.
Project description:Seed germination of a terrestrial plant constitute dynamic changes in various physiological processes related to growth and development. These physiological processes can be affected by various abiotic and biotic stressors. Here we looked at how the two commonly used nanoparticles, nano-titania (TiO2) and nano-ceria (CeO2) can impact the underlying mechanisms associated with germination at genome level. We used microarrays to detail the global programme of gene expression underlying various physiological processes associated with growth and development, and identified distinct classes of up-regulated genes during this process.
Project description:Seed germination of a terrestrial plant constitute dynamic changes in various physiological processes related to growth and development. These physiological processes can be affected by various abiotic and biotic stressors. Here we looked at how the two commonly used nanoparticles, nano-titania (TiO2) and nano-ceria (CeO2) can impact the underlying mechanisms associated with germination at genome level. We used microarrays to detail the global programme of gene expression underlying various physiological processes associated with growth and development, and identified distinct classes of up-regulated genes during this process. 12 day old Arabidopsis germinants were selected for RNA extraction and hybridization on Affymetrix microarrays. Arabidopsis seeds were individually exposed to 500mg/L concentration of nano-titania and nano-ceria for 12 days, followed by extraction of RNA for Microarray analysis. 0.1M KCl was used as control for nano-titania, whereas sterilized millipore water was used as control for nano-ceria.
Project description:Human Hepatocellular Carcinoma cells (HepG2) were exposed to six nanomaterials containing either Cerium oxide (CeO2) or Titanium oxide (TiO2) nanoparticles. Three different concentrations were tested: 0.3, 3, or 30 μg/mL) for 3 days. Microarray analysis was performed to identify genes differentially expressed following exposure to these chemicals.
Project description:The toxicity of silver and zinc oxide nanoparticles is hypothesised to be mediated by dissolved metal ions and cerium dioxide nanoparticles (CeO2 NPs) are hypothesised to induce toxicity specifically by oxidative stress dependant on their surface redox state. To test these hypotheses, RNAseq was applied to characterise the molecular responses of cells to metal nanoparticle and metal ion exposures. The human epithelial lung carcinoma cell line A549 was exposed to different CeO2 NPs with different surface charges, micron-sized and nano-sized silver particles and silver ions, micron-sized and nano-sized zinc oxide particles and zinc ions, or control conditions, for 1 hour, 6 hours and 24 hours. Concentrations were the lower of either EC20 or 128 micrograms/mL. Transcriptional responses were characterised by RNAseq transcriptomics using an Illumina HiSeq2500 .
Project description:The toxicity and toxicogenomics of selected anatase and rutile nanoparticles (NP) and bulk titanium dioxide (TiO2) particles were evaluated in the soil nematode Caenorhabditis elegans. Results indicated that bulk or nano-TiO2 particles were slightly toxic to soil nematode C. elegans, as measured by reproduction EC50 values ranging from 4 to 32 mg/L. Whole-genome microarray results indicated that the regulation of glutathione-S-transferase gst-3, cytochrome P450 cypp33-c11, stress resistance regulator scl-1, oxidoreductase wah-1, and embryonic development pod-2 genes were significantly affected by nano-sized and bulk TiO2 particles. More specifically, it was determined that anatase particles exerted a greater effect on metabolic pathways, whereas rutile particles had a greater effect on developmental processes. The up-regulation of the pod-2 gene corroborated the phenotypic effect observed in the reproduction test. Our results demonstrated that C. elegans is a good genomic model for nano-TiO2 toxicity assessment.
Project description:Background: N6-methyladenosine (m6A) is the most prominent epitranscriptomic modification to RNA in eukaryotes, but it’s role in adaptive changes within the gestational environment are poorly understood. Nano titanium dioxide (TiO2) exposure is common during pregnancy, though the impact fetal progeny is not entirely understood. We propose that gestational exposure to nano-TiO2 contributes to cardiac m6A methylation in fetal offspring and indirectly contributes to mitochondrial dysfunction.
Project description:Background: N6-methyladenosine (m6A) is the most prominent epitranscriptomic modification to RNA in eukaryotes, but it’s role in adaptive changes within the gestational environment are poorly understood. Nano titanium dioxide (TiO2) exposure is common during pregnancy, though the impact fetal progeny is not entirely understood. We propose that gestational exposure to nano-TiO2 contributes to cardiac m6A methylation in fetal offspring and indirectly contributes to mitochondrial dysfunction.
Project description:The nematode C. elegans was exposed to TiO2 nanoparticles (NPs) to evaluate the ecotoxicity of TiO2 nanoparticles. We used the DNA microarray method to understand changes in gene expression after the exposure to TIO2 NPs. We identified various genes involved in metal detoxification as well as in regulating worm development.
Project description:Pulmonary exposure to high doses of nanoparticles (NP) leads to well characterized lung toxicity in addition to long-term NP retention. However, pulmonary NP accumulation and toxicity following low dose exposures are not well described. In the present study we sought to: (1) investigate particle retention in mouse lungs following intratracheal instillation of varying doses of nano-sized titanium dioxide (nano-TiO2) and (2) determine the effects of long-term particle accumulation on pulmonary systems. Female C57BL/6 mice were exposed to rutile nano-TiO2 (primary size of 20.6 nm and surface area of 107.7 m2/g) via single intratracheal instillations of 18, 54 and 162 µg/mouse and sampled 1, 3 and 28 days post-exposure. The deposition of nano-TiO2 in the lungs was assessed using Nanoscale Hyperspectral Microscope. DNA microarrays, pathway-specific real-time RT-PCR (qPCR) and gene-specific qPCR arrays, and tissue protein analyses were employed to characterize pulmonary responses. Hyperspectral mapping showed dose-dependent retention of nano-TiO2 in the lungs up to 28 days post-exposure time. Retention did not correlate with the extent of inflammatory neutrophil influx into the lungs. DNA microarray analysis showed altered expression of approximately 3000 genes across all treatment groups (±1.3 fold; p<0.1). Several inflammatory mediators changed in a dose- and time-dependent manner at both the mRNA and protein levels. Although the low dose exposure failed to induce observable inflammation, significant changes in the expression of genes and proteins associated with inflammation were observed. Moreover, diminished (or absent) neutrophil influx in the low and medium dose groups was correlated with negative regulation of genes associated with ion homeostasis and muscle regulation. Gene expression changes for several inflammatory mediators have previously been noted in mice exposed to the same nano-TiO2 via inhalation. Our results suggest that retention of nano-TiO2 in the absence of inflammation and effective clearance can perturb calcium and ion homeostasis, and affect smooth muscle activities over time.