The RNA-binding protein TTP is a global post-transcriptional regulator of feedback control in inflammation [RNA-seq]
Ontology highlight
ABSTRACT: RNA-binding proteins (RBPs) facilitate post-transcriptional control of eukaryotic gene expression at multiple levels. The RBP tristetraprolin (TTP/Zfp36) is a signal-induced phosphorylated anti-inflammatory protein guiding unstable mRNAs of pro-inflammatory proteins for degradation and preventing translation. Using iCLIP, we have identified numerous mRNA targets bound by wild-type TTP and by a non-MK2-phosphorylatable TTP mutant (TTP-AA) in 1h LPS-stimulated macrophages and correlated their interaction with TTP to changes at the level of mRNA abundance and translation in a transcriptome-wide manner. The close similarity of the transcriptome of TTP-deficient and TTP-expressing macrophages upon short LPS stimulation suggested an effective inactivation of TTP by MK2 under these conditions whereas retained RNA-binding capacity of TTP-AA to 3’UTRs caused profound changes in the transcriptome and translatome, altered NF-κB-activation and induced cell death. Increased TTP binding to the 3'UTR of feedback inhibitor mRNAs, such as Ier3, Dusp1 or Tnfaip3, in the absence of MK2-dependent TTP neutralization resulted in a strong reduction of their protein synthesis contributing to the deregulation of the NF-κB-signaling pathway. Taken together, our study uncovers a role for TTP in NF-κB-signaling and highlights the importance of fine-tuned TTP activity-regulation by MK2 in order to control feedback signaling during the inflammatory response.
ORGANISM(S): Mus musculus
PROVIDER: GSE81237 | GEO | 2016/05/25
SECONDARY ACCESSION(S): PRJNA321044
REPOSITORIES: GEO
ACCESS DATA