Transcriptomics

Dataset Information

0

Type 1 interferons induce changes in core metabolism that are critical for immune function


ABSTRACT: Type 1 interferons (IFNs) induce complex responses that can be beneficial or deleterious, depending on context. Greater understanding of the mechanisms of action of these cytokines could allow new therapeutic approaches. We found that type 1 IFNs induced changes in cellular metabolism that were critical for changes in target cell function. This was apparent in plasmacytoid dendritic cells, which are specialized for type 1 IFN production, where toll-like receptor-9 (TLR9)-dependent activation was found to be dependent on increased fatty acid oxidation (FAO) and oxidative phosphorylation (OXPHOS) induced by autocrine signaling through the type 1 IFN receptor (IFNAR). Type 1 IFNs also induced FAO/OXPHOS in non-hematopoietic cells and were found to be responsible for increased FAO/OXPHOS in virus-infected cells. Increased FAO/OXPHOS in response to IFNAR signaling was regulated by the nuclear receptor PPARα. Our findings reveal PPARα/FAO/OXPHOS as potential targets to therapeutically modulate downstream effects of type 1 IFNs.

ORGANISM(S): Mus musculus

PROVIDER: GSE81889 | GEO | 2016/07/01

SECONDARY ACCESSION(S): PRJNA322861

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2016-07-01 | E-GEOD-81889 | biostudies-arrayexpress
2021-02-04 | GSE166114 | GEO
2023-11-21 | PXD043761 | Pride
2009-01-14 | E-GEOD-13522 | biostudies-arrayexpress
2021-08-25 | GSE182569 | GEO
2017-11-06 | GSE106472 | GEO
2017-11-06 | GSE106471 | GEO
2013-10-01 | GSE46478 | GEO
2018-05-22 | GSE110350 | GEO
2024-01-12 | GSE216023 | GEO