Transcriptomics

Dataset Information

0

Non-additive and imprinted gene expression in hybrid maize endosperm_19DAP


ABSTRACT: The nuclear content of the plant endosperm is the result of the contribution two maternal genomes and a single paternal genome. This 2:1 dosage relationship provides a unique system for studying the additivity of gene expression levels in reciprocal hybrids. A combination of microarray profiling and allele-specific expression analysis was performed using RNA isolated from endosperm tissues of maize inbred lines B73 and Mo17 and their reciprocal hybrids at two developmental stages, 13 and 19 days after pollination. By assessing the relative levels of expression in the reciprocal hybrids it was possible to determine the prevalence of additive and non-additive expression patterns. While the majority of differentially expressed genes displayed additive expression patterns in the endosperm, approximately 10% of the genes displayed non-additive expression patterns including maternal-like, paternal-like, dominant high-parent, dominant low-parent and expression patterns outside the range of the inbreds. The frequency of hybrid expression patterns outside of the parental range in maize endosperm tissue is much higher than that observed for vegetative tissues. For a set of 90 genes allele-specific expression assays were employed to monitor allelic bias and regulatory variation. Eight of these genes exhibited evidence for maternally or paternally biased expression at multiple stages of endosperm development and are potential examples of differential imprinting. Collectively, our data indicate that parental effects on gene expression are much stronger in endosperm than in vegetative tissues, and that endosperm imprinting may be far more common than previously estimated. Keywords: genotype comparison

ORGANISM(S): Zea mays

PROVIDER: GSE8278 | GEO | 2007/09/01

SECONDARY ACCESSION(S): PRJNA105429

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2008-06-16 | E-GEOD-8278 | biostudies-arrayexpress
2007-09-01 | GSE8275 | GEO
2008-06-16 | E-GEOD-8275 | biostudies-arrayexpress
2013-11-14 | E-MTAB-4319 | biostudies-arrayexpress
2010-01-09 | GSE19259 | GEO
2010-01-09 | E-GEOD-19259 | biostudies-arrayexpress
2014-07-08 | E-GEOD-52806 | biostudies-arrayexpress
2015-03-02 | E-GEOD-56675 | biostudies-arrayexpress
2024-06-05 | GSE249562 | GEO
2007-06-21 | GSE8179 | GEO