MNase-sensitive complexes in yeast: nucleosomes and non-histone barriers
Ontology highlight
ABSTRACT: Micrococcal nuclease (MNase) is commonly used to map nucleosomes genome-wide, but nucleosome maps are affected by the degree of digestion. It has been proposed that many yeast promoters are not nucleosome-free but occupied by easily digested, unstable, “fragile” nucleosomes. We analyzed the histone content of all MNase-sensitive complexes by MNase-ChIP-seq and Sonication-ChIP-seq. We find that yeast promoters are predominantly bound by non-histone protein complexes, with little evidence for fragile nucleosomes. We do detect MNase-sensitive nucleosomes elsewhere in the genome, including transcription termination sites. However, they have high A/T-content, suggesting that MNase sensitivity does not indicate instability, but the preference of MNase for A/T-rich DNA, such that A/T-rich nucleosomes are digested faster than G/C-rich nucleosomes. We confirm our observations by analyzing ChIP-exo, chemical mapping and ATAC-seq data from other laboratories. Thus, histone ChIP-seq experiments are essential to distinguish nucleosomes from other DNA-binding proteins that protect against MNase.
ORGANISM(S): Saccharomyces cerevisiae
PROVIDER: GSE83123 | GEO | 2016/12/15
SECONDARY ACCESSION(S): PRJNA324842
REPOSITORIES: GEO
ACCESS DATA