Transcriptomics

Dataset Information

0

A LysM Receptor-like Kinase Mediates Chitin Perception and Fungal Resistance in Arabidopsis


ABSTRACT: A LysM Receptor-like Kinase Mediates Chitin Perception and Fungal Resistance in Arabidopsis Jinrong Wan,1 Xuecheng Zhang,1 David Neece,2 Katrina M. Ramonell,3 Steve Clough,2,4 Sung-yong Kim,1 Minviluz Stacey,1 and Gary Stacey1* 1Division of Plant Sciences, National Center for Soybean Biotechnology, C.S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO 65211, USA 2Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA 3Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA 4US Department of Agriculture, Soybean/Maize Germplasm, Pathology and Genetics Research, Urbana, IL 61801, USA *To whom correspondence should be addressed. E-mail: staceyg@missouri.edu Abstract: Chitin, a polymer of N-acetyl-D-glucosamine, is found in fungal cell walls, but not in plants. Plant cells are capable of perceiving chitin fragments (chitooligosaccharides) to trigger various defense responses. We identified a LysM receptor-like protein (AtLysM RLK1) that is required for the perception of chitooligosaccharides in Arabidopsis. Mutation of this gene blocked the induction of almost all chitooligosaccharide-responsive genes (CRGs) and led to more susceptibility to fungal pathogens, but not to a bacterial pathogen. In addition, exogenously applied chitooligosaccharides enhanced resistance against both fungal and bacterial pathogens in the wild-type plants, but not in the mutant. Together, our data strongly suggest AtLysM RLK1 is the chitin receptor or a key part of the receptor complex and chitin is a PAMP (pathogen-associated molecular pattern) in fungi recognized by the receptor leading to the induction of plant innate immunity against fungal pathogens. Since LysM RLKs were also recently shown to be critical for the perception of the rhizobial lipo-chitin Nod signals, our data suggest that LysM RLKs not just recognize friendly symbiotic rhizobia (via their lipo-chitin Nod signals), but also hostile fungal pathogens (via their cell wall chitin). These data suggest a possible evolutionary relationship between the perception mechanisms of Nod signals and chitin by plants. Keywords: chitooctaose, chitin receptor mutant

ORGANISM(S): Arabidopsis thaliana

PROVIDER: GSE8319 | GEO | 2008/03/27

SECONDARY ACCESSION(S): PRJNA101301

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2008-06-16 | E-GEOD-8319 | biostudies-arrayexpress
| PRJNA101301 | ENA
2019-06-21 | GSE133053 | GEO
2023-08-24 | PXD038907 | Pride
2023-11-06 | PXD042084 | Pride
2023-08-24 | PXD038903 | Pride
2006-05-03 | GSE4746 | GEO
2007-10-04 | E-GEOD-4746 | biostudies-arrayexpress
2010-10-21 | PRD000289 | Pride
2019-04-08 | GSE127879 | GEO