Transcriptomics

Dataset Information

0

Benchmarking of RNA-sequencing analysis workflows using whole-transcriptome RT-qPCR expression data


ABSTRACT: RNA-sequencing has become the gold standard for whole-transcriptome gene expression quantification. Multiple algorithms have been developed to derive gene counts from sequencing reads. While a number of benchmarking studies have been conducted, the question remains how individual methods perform at accurately quantifying gene expression levels from RNA-sequencing reads. We performed an independent benchmarking study using RNA-sequencing data from the well established MAQCA and MAQCB reference samples. RNA-sequencing reads were processed using five popular workflows (Tophat-HTSeq, Tophat-Cufflinks, STAR-HTSeq, Kallisto and Salmon) and resulting gene expression measurements were compared to expression data generated by wet-lab validated qPCR assays for all protein coding genes. All methods showed high gene expression rank correlations with qPCR data. When comparing gene expression fold changes between MAQCA and MAQCB samples, about 85% of the genes showed consistent results between RNA-sequencing and qPCR data. Of note, each method revealed a small but specific set of genes with inconsistent expression measurements. A significant proportion of these method-specific inconsistent genes were reproducibly identified in independent datasets. These genes were typically smaller, had fewer exons and were lower expressed compared to genes with consistent expression measurements. We propose that careful validation is warranted when evaluating RNA-seq based expression profiles for this specific set of genes.

ORGANISM(S): Homo sapiens

PROVIDER: GSE83402 | GEO | 2017/01/31

SECONDARY ACCESSION(S): PRJNA325812

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2014-02-17 | E-GEOD-50599 | biostudies-arrayexpress
2014-10-07 | E-GEOD-54173 | biostudies-arrayexpress
2022-10-15 | GSE215338 | GEO
2014-12-31 | GSE57941 | GEO
2024-10-10 | GSE278708 | GEO
| 2645606 | ecrin-mdr-crc
2017-08-17 | GSE100332 | GEO
2014-02-17 | GSE50599 | GEO
2014-07-24 | E-GEOD-58495 | biostudies-arrayexpress
2018-02-16 | GSE95574 | GEO