Locus-specific isolation of transcription elongation complexes from Saccharomyces cerevisiae
Ontology highlight
ABSTRACT: Transcription of mRNA products by RNA polymerase II (Pol II) is a multi-stage event subject to a multitude of regulatory processes. Transcription, RNA processing, and chromatin related factors all interact with Pol II to ensure proper timing and coordination of transcription and co-transcriptional processes. Many regulators must function simultaneously to coordinate these processes, yet few strategies exist to explore the full complement of factors regulating specific stages of transcription. To this end we developed a strategy to purify Pol II elongation complexes from specific loci of a single gene, namely the 5′ and 3′ regions, using sequences in the nascent RNA. Applying this strategy to Saccharomyces cerevisiae we determined the specific set of factors that interact with Pol II at precise stages during transcription. We identify many known region-specific factors as well as determine a role for the transcription termination factor Rai1 in regulating the early stages of transcription genome-wide. We also demonstrate a role for the ubiquitin ligase Bre1 in regulating Pol II dynamics during the latter stages of transcription. This strategy for gene and loci-specific isolation of transcription complexes will provide a useful tool to explore the host of factors that regulate the different stages of transcription and coordinate co-transcriptional processes.
ORGANISM(S): Saccharomyces cerevisiae
PROVIDER: GSE83546 | GEO | 2017/01/02
SECONDARY ACCESSION(S): PRJNA326280
REPOSITORIES: GEO
ACCESS DATA