Rice Gene Network Inferred from Expression Profiling of Plants Overexpressing OsWRKY13
Ontology highlight
ABSTRACT: Accumulating information indicates that plant disease resistance signaling pathway frequently interact with other pathways regulating developmental processes or abiotic stress responses. However, the molecular mechanisms of these types of crosstalk remain poorly understood in most cases. Here we report that OsWRKY13, an activator of rice resistance to both bacterial and fungal pathogens, functions as a convergent point of the crosstalk between pathogen-induced salicylate-dependent defense pathway and at least five other physiological pathways. Genome-wide analysis of the expression profiling of OsWRKY13-overexpressing lines showed that OsWRKY13 directly or indirectly regulates the expression of more than 500 genes, which are potentially involved in different physiological processes according to the classification of Gene Ontology database. Comparing the expression patterns of genes functioning in known pathways or cellular processes upon pathogen infection and the phenotypes between OsWRKY13-overexpressing and susceptible wild-type plants, we find that OsWRKY13 is also regulator of other physiological processes during pathogen infection. OsWRKY13-involved disease resistance pathway synergistically interacts with glutathione/glutaredoxin system and flavonoid biosynthesis pathway via OsWRKY13 to monitor redox homeostasis and may enhance the biosynthesis of antimicrobial flavonoid phytoalexins. Meanwhile, OsWRKY13-invloved disease resistance pathway antagonistically interacts with SNAC1-mediated abiotic-stress defense pathway, JA signaling pathway, and terpenoid metabolism pathway via OsWRKY13 to suppress salt and cold defense responses as well as may retard rice growth and development. Keywords: abiotic stress, bacterial blight, microarray, Oryza sativa, signal transduction, WRKY transcription factor
ORGANISM(S): Oryza sativa
PROVIDER: GSE8380 | GEO | 2008/07/02
SECONDARY ACCESSION(S): PRJNA101419
REPOSITORIES: GEO
ACCESS DATA