High-throughput RNA structure probing reveals critical folding events during early 60S ribosome assembly in yeast.
Ontology highlight
ABSTRACT: While the protein composition of various yeast 60S ribosomal subunit assembly intermediates has been studied in detail, little is known about ribosomal RNA (rRNA) structural rearrangements that take place during early 60S assembly steps. Using a high-throughput RNA structure probing method, we provide nucleotide resolution insights into rRNA structural rearrangements during nucleolar 60S assembly. Our results suggest that many rRNA-folding steps, such as folding of 5.8S rRNA, occur at a very specific stage of assembly, and propose that downstream nuclear assembly events can only continue once 5.8S folding has been completed. Our maps of nucleotide flexibility enable making predictions about the establishment of protein-rRNA interactions, providing intriguing insights into the temporal order of protein-rRNA as well as long-range inter-domain rRNA interactions. These data argue that many distant domains in the rRNA can assemble simultaneously during early 60S assembly and underscore the enormous complexity of 60S synthesis.Ribosome biogenesis is a dynamic process that involves the ordered assembly of ribosomal proteins and numerous RNA structural rearrangements. Here the authors apply ChemModSeq, a high-throughput RNA structure probing method, to quantitatively measure changes in RNA flexibility during the nucleolar stages of 60S assembly in yeast.
Project description:Ribosome assembly in eukaryotes involves the activity of hundreds of assembly factors that direct the hierarchical assembly of ribosomal proteins and numerous ribosomal RNA folding steps. However, detailed insights into the function of assembly factors and ribosomal RNA folding events are lacking. To address this, we have developed ChemModSeq, a method that combines structure probing, high throughput sequencing and statistical modeling, to quantitatively measure RNA structural rearrangements during the assembly of macromolecular complexes. By applying ChemModSeq to purified 40S assembly intermediates we obtained nucleotide-resolution maps of ribosomal RNA flexibility revealing structurally distinct assembly intermediates and mechanistic insights into assembly dynamics not readily observed in cryo-electron microscopy reconstructions. We show that RNA restructuring events coincide with the release of assembly factors and predict that completion of the head domain is required before the Rio1 kinase enters the assembly pathway. Collectively, our results suggest that 40S assembly factors regulate the timely incorporation of ribosomal proteins by delaying specific folding steps in the 3M-bM-^@M-^Y major domain of the 20S pre-ribosomal RNA. Three datasets of yeast ribosomal samples subjected to different chemical modifications; 1M7 dataset contains 8 different modified samples and 2 control samples; NAI dataset contains 3 different modified samples and 2 control samples; DMS dataset contains 1 modified sample and 1 control sample. Each sample consists of at least two replicates.
Project description:Ribosome assembly in eukaryotes involves the activity of hundreds of assembly factors that direct the hierarchical assembly of ribosomal proteins and numerous ribosomal RNA folding steps. However, detailed insights into the function of assembly factors and ribosomal RNA folding events are lacking. To address this, we have developed ChemModSeq, a method that combines structure probing, high throughput sequencing and statistical modeling, to quantitatively measure RNA structural rearrangements during the assembly of macromolecular complexes. By applying ChemModSeq to purified 40S assembly intermediates we obtained nucleotide-resolution maps of ribosomal RNA flexibility revealing structurally distinct assembly intermediates and mechanistic insights into assembly dynamics not readily observed in cryo-electron microscopy reconstructions. We show that RNA restructuring events coincide with the release of assembly factors and predict that completion of the head domain is required before the Rio1 kinase enters the assembly pathway. Collectively, our results suggest that 40S assembly factors regulate the timely incorporation of ribosomal proteins by delaying specific folding steps in the 3’ major domain of the 20S pre-ribosomal RNA.
Project description:Yeast large ribosomal subunit (LSU) precursors are subject to substantial changes in protein composition during their maturation due to coordinated transient interactions with a large number of ribosome biogenesis factors and due to the assembly of ribosomal proteins. These compositional changes go along with stepwise processing of LSU rRNA precursors and with specific rRNA folding events, as revealed by recent cryo-electron microscopy analyses of late nuclear and cytoplasmic LSU precursors. Here we aimed to analyze changes in the spatial rRNA surrounding of selected ribosomal proteins during yeast LSU maturation. For this we combined a recently developed tethered tertiary structure probing approach with both targeted and high-throughput readout strategies. Several structural features of late LSU precursors were faithfully detected by this procedure. In addition, the obtained data let us suggest that early rRNA precursor processing events are accompanied by a global transition from a flexible to a spatially restricted rRNA conformation. For intermediate LSU precursors, a number of structural hallmarks could be addressed which include the fold of the internal transcribed spacer between 5.8S rRNA and 25S rRNA, the orientation of the central protuberance and the spatial organization of the interface between LSU rRNA domains I and III.
Project description:Early pre-60S ribosomal particles are poorly characterized, highly dynamic complexes that undergo extensive rRNA folding and compaction concomitant with assembly of ribosomal proteins and exchange of assembly factors. Pre-60S particles contain numerous RNA helicases, which are likely regulators of accurate and efficient formation of appropriate rRNA structures. Here we reveal binding of the RNA helicase Dbp7 to domain V/VI of early pre-60S particles in yeast and show that in the absence of this protein, dissociation of the Npa1 scaffolding complex, release of the snR190 folding chaperone, recruitment of the A3 cluster factors and binding of the ribosomal protein uL3 are impaired. uL3 is critical for formation of the peptidyltransferase center and is responsible for stabilizing interactions between the 5’ and 3’ ends of the 25S, an essential pre-requisite for subsequent pre-60S maturation events. Highlighting the importance of pre-ribosome remodeling by Dbp7, our data suggest that in the absence of Dbp7 or its catalytic activity, early pre-ribosomal particles are targeted for degradation.
Project description:Early pre-60S ribosomal particles are poorly characterized, highly dynamic complexes that undergo extensive rRNA folding and compaction concomitant with assembly of ribosomal proteins and exchange of assembly factors. Pre-60S particles contain numerous RNA helicases, which are likely regulators of accurate and efficient formation of appropriate rRNA structures. Here we reveal binding of the RNA helicase Dbp7 to domain V/VI of early pre-60S particles in yeast and show that in the absence of this protein, dissociation of the Npa1 scaffolding complex, release of the snR190 folding chaperone, recruitment of the A3 cluster factors and binding of the ribosomal protein uL3 are impaired. uL3 is critical for formation of the peptidyltransferase center and is responsible for stabilizing interactions between the 5’ and 3’ ends of the 25S, an essential pre-requisite for subsequent pre-60S maturation events. Highlighting the importance of pre-ribosome remodeling by Dbp7, our data suggest that in the absence of Dbp7 or its catalytic activity, early pre-ribosomal particles are targeted for degradation.
Project description:Eukaryotic ribosome synthesis involves more than 200 assembly factors, which promote ribosomal RNA (rRNA) processing, modification and folding, and assembly of ribosomal proteins. The formation and maturation of the earliest pre-60S particles requires structural remodeling by the Npa1 complex, but is otherwise still poorly understood. Here we introduce Rbp95, a constituent of early pre-60S particles, as a novel ribosome assembly factor that likely already binds before the 90S to pre-60S transition. We show that Rbp95 is both genetically and physically linked to most Npa1 complex members, and to ribosomal protein Rpl3. Notably, the RNA-binding protein Rbp95 associates with helix H95 in the 3’ region of the 25S rRNA, in close proximity to the binding sites of Npa1 and Rpl3. Additionally, Rbp95 interacts with several snoRNAs. In the absence of Rbp95, proteins binding in proximity to helix H95 are less efficiently recruited to early pre-60S particles. Moreover, combined mutation of Rbp95 and Npa1 complex members leads to a delay in the formation of early pre-60S particles. We propose that Rbp95 acts together with the Npa1 complex in the 90S to pre-60S transition and in promoting pre-rRNA folding events within pre-60S particles that facilitate the recruitment of subsequent assembly factors.
Project description:In eukaryotes, three of the four ribosomal RNAs (rRNAs), the 5.8S, 18S and 25S/28S rRNAs, are processed from a single pre-rRNA transcript and assembled into ribosomes. The fourth rRNA, the 5S rRNA, is transcribed by RNA polymerase III and is assembled into the 5S ribonucleoprotein particle (5S RNP), containing ribosomal proteins Rpl5/uL18 and Rpl11/uL5, prior to its incorporation into pre-ribosomes. In mammals the 5S RNP is also central regulator of the homeostasis of the tumour suppressor p53. The nucleolar localisation of the 5S RNP and its assembly into pre-ribosomes is performed by a specialised complex composed of Rpf2 and Rrs1 in yeast or Bxdc1 and hRrs1 in humans. Here we report the structural and functional characterisation of the Rpf2-Rrs1 complex alone, in complex with the 5S RNA and within pre-60S ribosomes. We show that the Rpf2-Rrs1 complex contains a specialised 5S RNA E loop binding module, contacts the Rpl5 protein and also contacts the ribosome assembly factor Rsa4 and the 25S RNA. We propose that the Rpf2-Rrs1 complex establishes a network of interactions that guide the incorporation of the 5S RNP in pre-ribosomes in the initial conformation prior to its rotation to form the central protuberance found in the mature large ribosomal subunit.
Project description:Assembly of eukaryotic ribosomal subunits is a highly dynamic and energy-consuming process involving numerous structural and compositional changes. Here, we identify the pre-ribosomal binding sites of three ATP-dependent RNA helicases Has1, Mak5 and Spb4 and by elucidating the precise targets of these enzymes, we uncover direct roles of Has1 in mediating release of the U14 snoRNA and dissociation of a cluster of early pre-60S biogenesis factors. We further discover pre-rRNA remodelling by Mak5 enables recruitment of the ribosomal protein Rpl10 in the cytoplasm and show that binding of Spb4 to a molecular hinge at the base of ES27 facilitates binding of the export adaptor Arx1 to pre-60S complexes. Our data highlight RNA helicases as key regulators of critical events during ribosome biogenesis and provide novel insights into the structural remodelling events that take place during assembly of the ribosomal subunits.
Project description:Early pre-60S ribosomal particles are poorly characterized, highly dynamic complexes that undergo extensive rRNA folding and compaction concomitant with assembly of ribosomal proteins and exchange of assembly factors. Pre-60S particles contain numerous RNA helicases, which are likely regulators of accurate and efficient formation of appropriate rRNA structures. Here we reveal binding of the RNA helicase Dbp7 to domain V/VI of early pre-60S particles in yeast and show that in the absence of this protein, dissociation of the Npa1 scaffolding complex, release of the snR190 folding chaperone, recruitment of the A3 cluster factors and binding of the ribosomal protein uL3 are impaired. uL3 is critical for formation of the peptidyltransferase center and is responsible for stabilizing interactions between the 5’ and 3’ ends of the 25S, an essential pre-requisite for subsequent pre-60S maturation events. Highlighting the importance of pre-ribosome remodeling by Dbp7, our data suggest that in the absence of Dbp7 or its catalytic activity, early pre-ribosomal particles are targeted for degradation.
Project description:The eukaryotic ribosome biogenesis is a highly orchestrated multistep process that starts at the nucleolus with the transcription of pre-rRNAs 5S and 35S. The latter comprises the mature 18S, 5.8S and 25S rRNAs separated by internal transcribed spacers (ITS1 and ITS2) and externally flanked by the 5’ETS and 3’ETS. The 35S pre-rRNA undergoes several co- and post-transcriptional processing events, which will enable the pre-60S and pre-40S particles to take independent maturation routes. Hundreds of assembly factors (AF) are required, being recruited and released hierarchically, for the proper folding of the rRNAs and correct positioning of the ribosomal proteins. One of the most intricate events that have recently been described is the removal of the ITS2-containing structure called pre-60S foot, which happens in a step-wise manner. Nop53 is an essential 60S AF that binds close to the ITS2 and plays a fundamental role in recruiting the RNA exosome for the 7S pre-rRNA processing, thereby dismantling the foot structure. Here we characterize the impact of Nop53 binding to the pre-60S on the compositional changes that happen during 60S assembly. For this purpose, preribosomes were affinity-purified with TAP-tagged 60S AFs (Nop7, Erb1, Rsa4, Arx1, Nmd3, Yvh1, and Lsg1) representative of different maturation stages both in the presence and absence of Nop53. Nop7 particles were also coimmunoprecipitated in the presence of Nop53 mutants incapable of recruiting the exosome (Nop53∆1-71, Nop53∆48-98) to compare with Nop53 depletion. The isolated preribosomes were analyzed by label-free MS/MS-based quantitative proteomics, revealing early and late-stage specific effects of Nop53 depletion.