Project description:Tumor cell-containing Regions of Interest from 17 patients with melanoma after progression to Immune Checkpoint Blockade were profiled at the transcriptomic level.
Project description:Immune checkpoint blockade (ICB) has demonstrated efficacy in patients with melanoma, but many exhibit poor responses. Using single cell RNA sequencing of melanoma patient-derived circulating tumor cells (CTCs) and functional characterization using mouse melanoma models, we show that the KEAP1/NRF2 pathway modulates sensitivity to ICB, independently of tumorigenesis. The NRF2 negative regulator, KEAP1, shows intrinsic variation in expression, leading to tumor heterogeneity and subclonal resistance.
Project description:Immune checkpoint blockade (ICB) has demonstrated efficacy in patients with melanoma, but many exhibit poor responses. Using single cell RNA sequencing of melanoma patient-derived circulating tumor cells (CTCs) and functional characterization using mouse melanoma models, we show that the KEAP1/NRF2 pathway modulates sensitivity to ICB, independently of tumorigenesis. The NRF2 negative regulator, KEAP1, shows intrinsic variation in expression, leading to tumor heterogeneity and subclonal resistance.
Project description:Immune checkpoint blockade (ICB) has improved outcome for patients with metastatic melanoma but not all benefit from treatment. Several immune- and tumor intrinsic features are associated with clinical response at baseline. However, we need to further understand the molecular changes occurring during development of ICB resistance. Here, we collected biopsies from a cohort of 44 melanoma patients after progression to anti-CTLA4 or anti-PD1 monotherapy. Genetic alterations of antigen presentation and interferon gamma signaling pathways were observed in approximately 25% of ICB resistant cases. Anti-CTLA4 resistant lesions had a sustained immune response, including immune-regulatory features, as suggested by multiplex spatial and TCR clonality analyses. One anti-PD1 resistant lesion harbored a distinct immune cell niche, however, anti-PD1 resistant tumors were generally immune poor with non-expanded TCR clones. Such immune poor microenvironments were associated with melanoma cells having a de-differentiated phenotype lacking expression of MHC-I molecules. In addition, anti-PD1 resistant tumors had reduced fractions of PD1+ CD8+ T cells as compared to ICB naïve metastases. Collectively, these data show the complexity of ICB resistance and highlight differences between anti-CTLA4 and anti-PD1 resistance that may underlie differential clinical outcomes of therapy sequence and combination.
Project description:We analyzed baseline and on-therapy tumor biopsies from 101 patients with advanced melanoma treated with nivolumab (anti-PD-1) alone or combined with ipilimumab (anti-CTLA-4). Analysis of whole transcriptome data showed that T cell infiltration and interferon-gamma signaling signatures corresponded most highly with clinical response to therapy, with a reciprocal decrease in cell cycle and WNT signaling pathways in responding biopsies. Clinical outcome differences were likely not due to differential melanoma cell responses to interferon-gamma, as 57 human melanoma cell lines exposed in vitro to this cytokine showed a conserved interferon-gamma transcriptome response unless they had mutations that precluded signaling from the interferon-gamma receptor. Therefore, the magnitude of the antitumor T cell response and the corresponding downstream interferon-gamma signaling are the main drivers of clinical response or resistance to immune checkpoint blockade therapy.