Histone Deacetylase 3 Prepares Brown Adipose Tissue For Acute Thermogenic Challenge [ChIP-Seq, GRO-Seq]
Ontology highlight
ABSTRACT: Brown adipose tissue (BAT) is a thermogenic organ that requires Uncoupling Protein 1 (UCP1) to dissipate chemical energy as heat, to defend core body temperature against hypothermia, and counteract obesity and metabolic diseases1. However, the transcriptional mechanism ensuring BAT thermogenic capacity for survival prior to environmental cold is unknown. Here we show histone deacetylase 3 (HDAC3) is a required transcriptional regulator of BAT enhancers to ensure thermogenic aptitude and survival. Mice with genetic ablation of HDAC3 become severely hypothermic and fail to survive acute cold exposure. UCP1 is nearly absent in BAT lacking HDAC3 and there is marked down-regulation of mitochondrial oxidative phosphorylation (OXPHOS) genes. Remarkably, although HDAC3 canonically functions as a transcriptional corepressor2, HDAC3 functions as a coactivator of the estrogen-related receptor _ (ERR_) in BAT, and loss of HDAC3 leads to robust global down-regulation of ERR±-driven enhancers. HDAC3 coactivation of ERR_ is mediated through deacetylation of PGC-1_ and is required for basal transcription of Ucp1, OXPHOS, and Pgc-1_. Thus, HDAC3 uniquely primes Ucp1 and thermogenic gene transcription to ensure immediate BAT-driven thermogenesis upon acute exposure to dangerously cold temperatures.
Project description:Brown adipose tissue (BAT) is a thermogenic organ that requires Uncoupling Protein 1 (UCP1) to dissipate chemical energy as heat, to defend core body temperature against hypothermia, and counteract obesity and metabolic diseases1. However, the transcriptional mechanism ensuring BAT thermogenic capacity for survival prior to environmental cold is unknown. Here we show histone deacetylase 3 (HDAC3) is a required transcriptional regulator of BAT enhancers to ensure thermogenic aptitude and survival. Mice with genetic ablation of HDAC3 become severely hypothermic and fail to survive acute cold exposure. UCP1 is nearly absent in BAT lacking HDAC3 and there is marked down-regulation of mitochondrial oxidative phosphorylation (OXPHOS) genes. Remarkably, although HDAC3 canonically functions as a transcriptional corepressor2, HDAC3 functions as a coactivator of the estrogen-related receptor _ (ERR_) in BAT, and loss of HDAC3 leads to robust global down-regulation of ERR±-driven enhancers. HDAC3 coactivation of ERR_ is mediated through deacetylation of PGC-1_ and is required for basal transcription of Ucp1, OXPHOS, and Pgc-1_. Thus, HDAC3 uniquely primes Ucp1 and thermogenic gene transcription to ensure immediate BAT-driven thermogenesis upon acute exposure to dangerously cold temperatures.
Project description:Deficiency of the epigenome modulator histone deacetylase 3 (HDAC3) in brown adipose tissue (BAT) impairs the ability of mice to survive in near-freezing temperatures. Here, we report that short-term exposure to mild cold temperature (STEMCT: 15°C for 24 hours) averted lethal hypothermia of mice lacking HDAC3 in BAT (HDAC3 BAT KO) exposed to 4°C. STEMCT restored the induction of the thermogenic coactivator PGC-1a along with UCP1 at 22°C, which is greatly impaired in HDAC3-deficient BAT, and deletion of either UCP1 or PGC-1a prevented the protective effect of STEMCT. Remarkably, the protection of HDAC3 BAT KO mice from cold intolerance following STEMCT lasted for up to 7 days. Transcriptional activator C/EBPb was induced by short-term cold exposure in mouse and human BAT and, uniquely, remained high for 7 days following STEMCT. Furthermore, analysis of C/EBPb activity revealed increased binding following STEMCT at genes, including the enhancers/promotors of UCP1 and PGC-1a. These results reveal the existence of a cold-adaptive epigenomic memory mediated by C/EBPb that is persistent and HDAC3-independent.
Project description:Deficiency of the epigenome modulator histone deacetylase 3 (HDAC3) in brown adipose tissue (BAT) impairs the ability of mice to survive in near-freezing temperatures. Here, we report that short-term exposure to mild cold temperature (STEMCT: 15°C for 24 hours) averted lethal hypothermia of mice lacking HDAC3 in BAT (HDAC3 BAT KO) exposed to 4°C. STEMCT restored the induction of the thermogenic coactivator PGC-1a along with UCP1 at 22°C, which is greatly impaired in HDAC3-deficient BAT, and deletion of either UCP1 or PGC-1a prevented the protective effect of STEMCT. Remarkably, the protection of HDAC3 BAT KO mice from cold intolerance following STEMCT lasted for up to 7 days. Transcriptional activator C/EBPb was induced by short-term cold exposure in mouse and human BAT and, uniquely, remained high for 7 days following STEMCT. Furthermore, analysis of C/EBPb activity revealed increased binding following STEMCT at genes, including the enhancers/promotors of UCP1 and PGC-1a. These results reveal the existence of a cold-adaptive epigenomic memory mediated by C/EBPb that is persistent and HDAC3-independent.
Project description:Deficiency of the epigenome modulator histone deacetylase 3 (HDAC3) in brown adipose tissue (BAT) impairs the ability of mice to survive in near-freezing temperatures. Here, we report that short-term exposure to mild cold temperature (STEMCT: 15°C for 24 hours) averted lethal hypothermia of mice lacking HDAC3 in BAT (HDAC3 BAT KO) exposed to 4°C. STEMCT restored the induction of the thermogenic coactivator PGC-1a along with UCP1 at 22°C, which is greatly impaired in HDAC3-deficient BAT, and deletion of either UCP1 or PGC-1a prevented the protective effect of STEMCT. Remarkably, the protection of HDAC3 BAT KO mice from cold intolerance following STEMCT lasted for up to 7 days. Transcriptional activator C/EBPb was induced by short-term cold exposure in mouse and human BAT and, uniquely, remained high for 7 days following STEMCT. Furthermore, analysis of C/EBPb activity revealed increased binding following STEMCT at genes, including the enhancers/promotors of UCP1 and PGC-1a. These results reveal the existence of a cold-adaptive epigenomic memory mediated by C/EBPb that is persistent and HDAC3-independent.
Project description:Deficiency of the epigenome modulator histone deacetylase 3 (HDAC3) in brown adipose tissue (BAT) impairs the ability of mice to survive in near-freezing temperatures. Here, we report that short-term exposure to mild cold temperature (STEMCT: 15°C for 24 hours) averted lethal hypothermia of mice lacking HDAC3 in BAT (HDAC3 BAT KO) exposed to 4°C. STEMCT restored the induction of the thermogenic coactivator PGC-1a along with UCP1 at 22°C, which is greatly impaired in HDAC3-deficient BAT, and deletion of either UCP1 or PGC-1a prevented the protective effect of STEMCT. Remarkably, the protection of HDAC3 BAT KO mice from cold intolerance following STEMCT lasted for up to 7 days. Transcriptional activator C/EBPb was induced by short-term cold exposure in mouse and human BAT and, uniquely, remained high for 7 days following STEMCT. Furthermore, analysis of C/EBPb activity revealed increased binding following STEMCT at genes, including the enhancers/promotors of UCP1 and PGC-1a. These results reveal the existence of a cold-adaptive epigenomic memory mediated by C/EBPb that is persistent and HDAC3-independent.
Project description:Brown adipose tissue (BAT) is a key thermogenic organ, whose expression of Uncoupling Protein 1 (UCP1) and ability to maintain body temperature in response to acute cold exposure requires histone deacetylase 3 (HDAC3). HDAC3 exists in tight association with nuclear receptor corepressors NCoR1 and NCoR2(also known as Silencing Mediator of Retinoid and Thyroid Receptors, or SMRT), butthe functions of NCoR1/2 in BAT have not been established.Here we report that, as expected, genetic loss of NCoR1/2 in BAT (NCoR1/2 BAT-dKO) leads to loss of HDAC3 activity. In addition, HDAC3 is no longer bound at its physiological genomic sites in the absence of NCoR1/2, leading to a shared deregulation of BAT lipid metabolism between the NCoR1/2 BAT-dKO and HDAC3 BAT KO mice. Despite these commonalities, however, loss of NCoR1/2 in BAT does not phenocopy the cold sensitivity observed in the HDAC3 BAT-KO, nor does loss of either corepressor alone. Instead, BAT lacking NCoR1/2 is inflamed, particularly with respect to the IL-17 axis that increases thermogenic capacity by enhancing innervation. Integration of BAT RNA-seq and ChIP-seq data revealed that NCoR1/2 directly regulate Mmp9, which integrates extracellular matrix remodeling and inflammation. These findings reveal pleiotropic functions of the NCoR/HDAC3 corepressor complex in BAT, such that HDAC3-independent suppression of BAT inflammation counterbalances their stimulation of HDAC3 activity in the control of thermogenesis.
Project description:In acute cold stress in mammals, JMJD1A, an H3K9 demethylase, up-regulates thermogenic gene expressions through β-adrenergic signaling in brown adipose tissue (BAT). Aside BAT-driven thermogenesis, mammals also have another mechanism to cope with long-term cold stress by inducing the browning of subcutaneous white adipose tissue (scWAT). Here, we show that this occurs through a two-step process that requires both β-adrenergic dependent phosphorylation of S265 and demethylation of H3K9me2 by JMJD1A. The histone demethylation independent acute Ucp1 induction in BAT and demethylation dependent chronic Ucp1 expression in beige-scWAT provide complementary molecular mechanisms to ensure an ordered transition between acute and chronic adaptation to cold stress. JMJD1A mediates two major signaling pathways, namlely β-adrenergic receptor and PPARγ activation, via PRDM16-PPARγ-P-JMJD1A complex for beige adipogenesis.
Project description:In acute cold stress in mammals, JMJD1A, an H3K9 demethylase, up-regulates thermogenic gene expressions through β-adrenergic signaling in brown adipose tissue (BAT). Aside BAT-driven thermogenesis, mammals also have another mechanism to cope with long-term cold stress by inducing the browning of subcutaneous white adipose tissue (scWAT). Here, we show that this occurs through a two-step process that requires both β-adrenergic dependent phosphorylation of S265 and demethylation of H3K9me2 by JMJD1A. The histone demethylation independent acute Ucp1 induction in BAT and demethylation dependent chronic Ucp1 expression in beige-scWAT provide complementary molecular mechanisms to ensure an ordered transition between acute and chronic adaptation to cold stress. JMJD1A mediates two major signaling pathways, namlely β-adrenergic receptor and PPARγ activation, via PRDM16-PPARγ-P-JMJD1A complex for beige adipogenesis.
Project description:Coenzyme Q is an essential component of mitochondrial function and required for thermogenic activity in brown adipose tissues (BAT). BAT CoQ deficiency (50-75%) by genetic or pharmacological means does not interfere with basal or maximal mitochondrial respiration in brown adipocytes but increases mitochondrial oxidants and induces UPRmt, ISR, and repression of UCP1 expression. ATF4, the master regulator of ISR, is required for UCP1 suppression in BAT CoQ deficiency. In animals, BAT CoQ deficiency causes cold intolerance but activates compensatory thermogenic mechanisms in BAT and other tissues via greatly induced BAT FGF21 expression resulting in paradoxically upregulated whole-body respiration rates and protection from obesity at room temperature and thermoneutrality. BAT-specific loss of either ATF4 or FGF21 abolishes these metabolic benefits demonstrating a central role for CoQ in the modulation of whole-body energy expenditure and thus for the etiology of primary and secondary CoQ deficiencies.
Project description:Brown adipose tissue (BAT) holds therapeutic potential for obesity and metabolic syndrome via increasing energy expenditure. Both inter- and intra-individual differences contribute to heterogeneity in human BAT and potentially to differential thermogenic capacity in human populations. Here, we demonstrated the generation of brown and white preadipocyte clones from human neck fat and characterized their adipogenic differentiation and thermogenic function. Combining a UCP1 reporter system and gene expression profiling, we defined novel sets of gene signatures in human preadipocytes that could predict the thermogenic potential of mature adipocytes. Knocking out the positive UCP1 regulators, PREX1 and EDNRB, in brown preadipocytes by CRISPRs markedly abolished the high level of UCP1 in mature brown adipocytes. Finally, we showed the ability to prospectively isolate adipose progenitors with great thermogenic potential. These data provide new insights into the cellular heterogeneity in human fat and offer clinically relevant gene targets that mark thermogenically competent preadipocytes. Highly adipogenic clonal white and brown cell lines