Project description:Rabbits have been widely used for studying ocular physiology and pathology due to their relatively large eye size and similar structures with human eyes. Various rabbit ocular disease models, such as dry eye, age-related macular degeneration, and glaucoma, have been established. Despite the growing application of proteomics in vision research using rabbit ocular models, there is no spectral assay library for rabbit eye proteome publicly available. Here, we generated spectral assay libraries for rabbit eye compartments, including conjunctiva, cornea, iris, retina, sclera, vitreous humor, and tears using fractionated samples and ion mobility separation enabling deep proteome coverage. The rabbit eye spectral assay library includes 9,830 protein groups and 113,593 peptides. We present the data as a freely available community resource for proteomic studies in the vision field.
Project description:MicroRNA expression in the mouse eye.MicroRNAs (miRNAs) are key regulators of biological processes. To define miRNA function in the eye, it is essential to determine a high-resolution profile of their spatial and temporal distribution. In this report, we present the first comprehensive survey of miRNA expression in ocular tissues, using both microarray and RNA in situ hybridization (ISH) procedures. We initially determined the expression profiles of miRNAs in the retina, lens, cornea and retinal pigment epithelium of the adult mouse eye by microarray. Each tissue exhibited notably distinct miRNA enrichment patterns and cluster analysis identified groups of miRNAs that showed predominant expression in specific ocular tissues or combinations of them. Next, we performed RNA ISH for over 220 miRNAs, including those showing the highest expression levels by microarray, and generated a high-resolution expression atlas of miRNAs in the developing and adult wild-type mouse eye, which is accessible in the form of a publicly available web database. We found that 122 miRNAs displayed restricted expression domains in the eye at different developmental stages, with the majority of them expressed in one or more cell layers of the neural retina . This analysis revealed miRNAs with differential expression in ocular tissues and provided a detailed atlas of their tissue-specific distribution during development of the murine eye. The combination of the two approaches offers a valuable resource to decipher the contributions of specific miRNAs and miRNA clusters to the development of distinct ocular structures. microRNA profiling of ocular tissues from mouse. In particular we analysed the cornea, lens, Retina Pigment Epithelium (RPE) and retina and compared them against RNA extracted from the entire eye. The purpose of this experiment was to understand which microRNAs are present nd/or show differential expression in the various structures of the eye (cornea, lens, RPE, retina). The samples numbered 1 & 2 (i.e. CORNEA1, CORNEA2 etc ) are biological replicates, prepared from tissues dissecyed from different groups of wild-type animals. RNA extracted from the entire eye (EYE) served as the unique reference sample. For each tissue to be analysed we performed the following hybridizations: - 2 slides for lens (LENS1, LENS2) vs entire eye (EYE) - 2 slides for RPE (RPE1, RPE2) vs entire eye (EYE) - 2 slides for retina (RETINA1, RETINA2) vs entire eye (EYE) - 2 slides for cornea (CORNEA1, CORNEA2) vs entire eye (EYE) - 1 slide for entire eye (EYE) vs entire eye (EYE)
Project description:We report RNA-Seq experiments of whole eye tissues from A/J, BALB/c, and C57BL/6 background mice. Examine ocular tissue from 3 different background mice that display varying rates of retinal degeneration.
Project description:MicroRNA expression in the mouse eye.MicroRNAs (miRNAs) are key regulators of biological processes. To define miRNA function in the eye, it is essential to determine a high-resolution profile of their spatial and temporal distribution. In this report, we present the first comprehensive survey of miRNA expression in ocular tissues, using both microarray and RNA in situ hybridization (ISH) procedures. We initially determined the expression profiles of miRNAs in the retina, lens, cornea and retinal pigment epithelium of the adult mouse eye by microarray. Each tissue exhibited notably distinct miRNA enrichment patterns and cluster analysis identified groups of miRNAs that showed predominant expression in specific ocular tissues or combinations of them. Next, we performed RNA ISH for over 220 miRNAs, including those showing the highest expression levels by microarray, and generated a high-resolution expression atlas of miRNAs in the developing and adult wild-type mouse eye, which is accessible in the form of a publicly available web database. We found that 122 miRNAs displayed restricted expression domains in the eye at different developmental stages, with the majority of them expressed in one or more cell layers of the neural retina . This analysis revealed miRNAs with differential expression in ocular tissues and provided a detailed atlas of their tissue-specific distribution during development of the murine eye. The combination of the two approaches offers a valuable resource to decipher the contributions of specific miRNAs and miRNA clusters to the development of distinct ocular structures.
Project description:The initial aim of this work was to understand the pathophysiology of Enhanced S-cone Syndrome (ESCS) that leads to retinal degeneration. Although ESCS was identified in humans decades ago and since then the causative genes have been elucidated, our understanding of the accompanying retinal degeneration is still poorly understood. Knockout of the Nrl transcription factor in mice produces a retina overpopulated with S-cone like photoreceptors along with absence of rod photoreceptors and recapitulates many of the phenotypic features seen in human ESCS patients. We wanted to study this murine model through a combinatorial genetic and structural approach to improve understanding of the disease process that leads to photoreceptor degeneration and blindness, potentially guiding future therapies. By using RNA-Sequencing (RNA-Seq) to examine mature wild type and Nrl-/- ocular tissues, we were able to determine global changes in their transcriptomes. The massively parallel RNA-sequencing experiment revealed new insight into the transcriptional mis-regulation in the ESCS murine model and revealed a change in gene expression in putative proteins involved in photoreceptor phagocytosis. Key photoreceptor ligands necessary for phagocyotsis, Tub and Tulp1, were down-regulated in the Nrl-/- retina. Down regulation of key retinoid metabolic genes, coupled with down-regulation of Tub and Tulp1, suggested a potential mechanism involving defective phagocytosis underlies the photoreceptor degeneration seen in ESCS. We report RNA-Seq experiments of whole eye and retinal tissues from wild type and Nrl transcription factor knockout mice on the C57BL/6 background. Examine two different ocular tissues in two mouse models of varying photoreceptor populations
Project description:Genome-scale DNA methylation profiling using the Infinium DNA methylation BeadChip platform and samples from normal human eye and five ocular- related diseases DNA methylation analysis of eye samples from patient suffering ocular diseases (retinal detachment, diabetic retinopathy, glaucoma, uveal melanoma and retinoblastoma) using the Infinium DNA methylation BeadChip platform .
Project description:We report the single base pair analysis of the ocular transcriptome from wild type and BC027072 knockout animals. Comparison was analyzed to understand gene expression changes in a mouse model for early onset retinal degeneration which phenocopies a human form of autosomal recessive retinitis pigmentosa Eye mRNA profiles were generated from 3 week-old C57BL/6J and BC027072 -/- in triplicate and sequenced using the Illumina HiSeq 2500