Genome-wide expression profiling of Candida albicans transcription factor Skn7p
Ontology highlight
ABSTRACT: Skn7 is a conserved fungal heat shock factor-type transcriptional regulator. It participates in maintaining cell wall integrity and regulates the osmotic/oxidative stress response (OSR) in S. cerevisiae, where it is part of a two-component signal transduction system. Here, we comprehensively address the function of Skn7 in the human fungal pathogen Candida albicans. We provide evidence reinforcing functional divergence, with loss of the cell wall/osmotic stress-protective roles and acquisition of the ability to regulate morphogenesis on solid medium. Mapping of the Skn7 transcriptional circuitry, through combination of genome-wide expression and location technologies, pointed to a dual regulatory role encompassing OSR and filamentous growth. Genetic interaction analyses revealed close functional interactions between Skn7 and master regulators of morphogenesis, including Efg1, Cph1 and Ume6. Intracellular biochemical assays revealed that Skn7 is crucial for limiting the accumulation of reactive oxygen species (ROS) during filamentous growth on solid medium. Interestingly, functional domain mapping using site-directed mutagenesis allowed decoupling of Skn7 function in morphogenesis from protection against intracellular ROS. Our work identifies Skn7 as an integral part of the transcriptional circuitry controlling C. albicans filamentous growth and illuminates how C. albicans relies on an evolutionarily-conserved regulator to protect itself from intracellular ROS during morphological development.
Project description:Skn7 is a conserved fungal heat shock factor-type transcriptional regulator. It participates in maintaining cell wall integrity and regulates the osmotic/oxidative stress response (OSR) in S. cerevisiae, where it is part of a two-component signal transduction system. Here, we comprehensively address the function of Skn7 in the human fungal pathogen Candida albicans. We provide evidence reinforcing functional divergence, with loss of the cell wall/osmotic stress-protective roles and acquisition of the ability to regulate morphogenesis on solid medium. Mapping of the Skn7 transcriptional circuitry, through combination of genome-wide expression and location technologies, pointed to a dual regulatory role encompassing OSR and filamentous growth. Genetic interaction analyses revealed close functional interactions between Skn7 and master regulators of morphogenesis, including Efg1, Cph1 and Ume6. Intracellular biochemical assays revealed that Skn7 is crucial for limiting the accumulation of reactive oxygen species (ROS) during filamentous growth on solid medium. Interestingly, functional domain mapping using site-directed mutagenesis allowed decoupling of Skn7 function in morphogenesis from protection against intracellular ROS. Our work identifies Skn7 as an integral part of the transcriptional circuitry controlling C. albicans filamentous growth and illuminates how C. albicans relies on an evolutionarily-conserved regulator to protect itself from intracellular ROS during morphological development.
Project description:The capacity to sense and transduce temperature signals pervades all aspects of biology, and temperature exerts powerful control over the development and virulence of diverse pathogens. In the leading fungal pathogen of humans, Candida albicans, temperature has a profound impact on morphogenesis, a key virulence trait. Many cues that induce the transition from yeast to filamentous growth are contingent on a minimum temperature of 37ºC, while further elevatation to 39ºC serves as an independent inducing cue. The molecular chaperone Hsp90 is a key regulator of C. albicans temperature-dependent morphogenesis, as induction of filamentous growth requires relief from Hsp90-mediated repression of the morphogenetic program. Compromise of Hsp90 function genetically, pharmacologically, or by elevated temperature induces filamentation in a manner that depends on protein kinase A (PKA) signaling, but is independent of the terminal transcription factor, Efg1. Here, we determine that despite morphological and regulatory differences, inhibition of Hsp90 induces a transcriptional profile similar to that induced by other filamentation cues, and does so in a manner that is independent of Efg1. Further, we identify Hms1 as a transcriptional regulator required for morphogenesis induced by elevated temperature or compromise of Hsp90 function. Hms1 functions downstream of the cyclin Pcl, and the cyclin-dependent kinase Pho85, both of which are required for temperature-dependent filamentation. Upon Hsp90 inhibition, Hms1 binds to DNA elements involved in filamentous growth, including UME6 and RBT5, and regulates their expression, providing a mechanism through which Pho85, Pcl1, and Hms1 govern morphogenesis. Consistent with the importance of morphogenetic flexibility with virulence, deletion of C. albicans HMS1 attenuates virulence in a metazoan model of infection. Thus, we establish a new mechanism through which Hsp90 orchestrates C. albicans morphogenesis, and define novel regulatory circuitry governing a temperature-dependent developmental program, with broad implications for temperature sensing and virulence of microbial pathogens. Two-color experimental design testing the effect of geldanamycin on wild type of delta-efg1 cells. RNA from each replicate came from independent cultures.
Project description:The capacity to sense and transduce temperature signals pervades all aspects of biology, and temperature exerts powerful control over the development and virulence of diverse pathogens. In the leading fungal pathogen of humans, Candida albicans, temperature has a profound impact on morphogenesis, a key virulence trait. Many cues that induce the transition from yeast to filamentous growth are contingent on a minimum temperature of 37ºC, while further elevatation to 39ºC serves as an independent inducing cue. The molecular chaperone Hsp90 is a key regulator of C. albicans temperature-dependent morphogenesis, as induction of filamentous growth requires relief from Hsp90-mediated repression of the morphogenetic program. Compromise of Hsp90 function genetically, pharmacologically, or by elevated temperature induces filamentation in a manner that depends on protein kinase A (PKA) signaling, but is independent of the terminal transcription factor, Efg1. Here, we determine that despite morphological and regulatory differences, inhibition of Hsp90 induces a transcriptional profile similar to that induced by other filamentation cues, and does so in a manner that is independent of Efg1. Further, we identify Hms1 as a transcriptional regulator required for morphogenesis induced by elevated temperature or compromise of Hsp90 function. Hms1 functions downstream of the cyclin Pcl, and the cyclin-dependent kinase Pho85, both of which are required for temperature-dependent filamentation. Upon Hsp90 inhibition, Hms1 binds to DNA elements involved in filamentous growth, including UME6 and RBT5, and regulates their expression, providing a mechanism through which Pho85, Pcl1, and Hms1 govern morphogenesis. Consistent with the importance of morphogenetic flexibility with virulence, deletion of C. albicans HMS1 attenuates virulence in a metazoan model of infection. Thus, we establish a new mechanism through which Hsp90 orchestrates C. albicans morphogenesis, and define novel regulatory circuitry governing a temperature-dependent developmental program, with broad implications for temperature sensing and virulence of microbial pathogens. Genome-wide occupancy experiments (Chip-CHIP) of FLAG-tagged Hms1p from cells grown in the presence or absence of geldanamycin (GldA). Co-precipitating genomic DNA was labelled and hybridized to whole-genome tiling arrays.
Project description:The capacity to sense and transduce temperature signals pervades all aspects of biology, and temperature exerts powerful control over the development and virulence of diverse pathogens. In the leading fungal pathogen of humans, Candida albicans, temperature has a profound impact on morphogenesis, a key virulence trait. Many cues that induce the transition from yeast to filamentous growth are contingent on a minimum temperature of 37ºC, while further elevatation to 39ºC serves as an independent inducing cue. The molecular chaperone Hsp90 is a key regulator of C. albicans temperature-dependent morphogenesis, as induction of filamentous growth requires relief from Hsp90-mediated repression of the morphogenetic program. Compromise of Hsp90 function genetically, pharmacologically, or by elevated temperature induces filamentation in a manner that depends on protein kinase A (PKA) signaling, but is independent of the terminal transcription factor, Efg1. Here, we determine that despite morphological and regulatory differences, inhibition of Hsp90 induces a transcriptional profile similar to that induced by other filamentation cues, and does so in a manner that is independent of Efg1. Further, we identify Hms1 as a transcriptional regulator required for morphogenesis induced by elevated temperature or compromise of Hsp90 function. Hms1 functions downstream of the cyclin Pcl, and the cyclin-dependent kinase Pho85, both of which are required for temperature-dependent filamentation. Upon Hsp90 inhibition, Hms1 binds to DNA elements involved in filamentous growth, including UME6 and RBT5, and regulates their expression, providing a mechanism through which Pho85, Pcl1, and Hms1 govern morphogenesis. Consistent with the importance of morphogenetic flexibility with virulence, deletion of C. albicans HMS1 attenuates virulence in a metazoan model of infection. Thus, we establish a new mechanism through which Hsp90 orchestrates C. albicans morphogenesis, and define novel regulatory circuitry governing a temperature-dependent developmental program, with broad implications for temperature sensing and virulence of microbial pathogens.
Project description:The capacity to sense and transduce temperature signals pervades all aspects of biology, and temperature exerts powerful control over the development and virulence of diverse pathogens. In the leading fungal pathogen of humans, Candida albicans, temperature has a profound impact on morphogenesis, a key virulence trait. Many cues that induce the transition from yeast to filamentous growth are contingent on a minimum temperature of 37ºC, while further elevatation to 39ºC serves as an independent inducing cue. The molecular chaperone Hsp90 is a key regulator of C. albicans temperature-dependent morphogenesis, as induction of filamentous growth requires relief from Hsp90-mediated repression of the morphogenetic program. Compromise of Hsp90 function genetically, pharmacologically, or by elevated temperature induces filamentation in a manner that depends on protein kinase A (PKA) signaling, but is independent of the terminal transcription factor, Efg1. Here, we determine that despite morphological and regulatory differences, inhibition of Hsp90 induces a transcriptional profile similar to that induced by other filamentation cues, and does so in a manner that is independent of Efg1. Further, we identify Hms1 as a transcriptional regulator required for morphogenesis induced by elevated temperature or compromise of Hsp90 function. Hms1 functions downstream of the cyclin Pcl, and the cyclin-dependent kinase Pho85, both of which are required for temperature-dependent filamentation. Upon Hsp90 inhibition, Hms1 binds to DNA elements involved in filamentous growth, including UME6 and RBT5, and regulates their expression, providing a mechanism through which Pho85, Pcl1, and Hms1 govern morphogenesis. Consistent with the importance of morphogenetic flexibility with virulence, deletion of C. albicans HMS1 attenuates virulence in a metazoan model of infection. Thus, we establish a new mechanism through which Hsp90 orchestrates C. albicans morphogenesis, and define novel regulatory circuitry governing a temperature-dependent developmental program, with broad implications for temperature sensing and virulence of microbial pathogens.
Project description:Morphogenetic transitions are prevalent in the fungal kingdom. For a leading human fungal pathogen, Candida albicans, the capacity to transition between yeast and filaments is key for virulence. For the model yeast Saccharomyces cerevisiae, filamentation enables nutrient acquisition. A recent functional genomic screen in S. cerevisiae identified Mfg1 as a regulator of morphogenesis that acts in complex with Flo8 and Mss11 to mediate transcriptional responses crucial for filamentation. In C. albicans, Mfg1 also interacts physically with Flo8 and Mss11 and is critical for filamentation in response to diverse cues, but the mechanisms through which it regulates morphogenesis remained elusive. Here, we explored the consequences of perturbation of Mfg1, Flo8, and Mss11 on C. albicans morphogenesis, and identified functional divergence of complex members. We observed that C. albicans Mss11 was dispensable for filamentation, and that overexpression of FLO8 caused constitutive filamentation even in the absence of Mfg1. Harnessing transcriptional profiling and chromatin immunoprecipitation coupled to microarray analysis, we identified divergence between transcriptional targets of Flo8 and Mfg1 in C. albicans. We also established that Flo8 and Mfg1 cooperatively bind to promoters of key regulators of filamentation, including TEC1, for which overexpression was sufficient to restore filamentation in the absence of Flo8 or Mfg1. To further explore the circuitry through which Mfg1 regulates morphogenesis, we employed a novel strategy to select for mutations that restore filamentation in the absence of Mfg1. Whole genome sequencing of filamentation-competent mutants revealed chromosome 6 amplification as a conserved adaptive mechanism. A key determinant of the chromosome 6 amplification is FLO8, as deletion of one allele blocked morphogenesis, and chromosome 6 was not amplified in evolved lineages for which FLO8 was re-located to a different chromosome. Thus, this work highlights rewiring of key morphogenetic regulators over evolutionary time and aneuploidy as an adaptive mechanism driving fungal morphogenesis.
Project description:Adaptation of C. elegans to hypertonic environments involves the accumulation of the organic osmolyte glycerol via transcriptional upregulation of the glycerol biosynthestic enzyme gpdh-1. A number of mutants, termed osmotic stress resistant (osr) mutants, have been identified. osr mutants cause constitutive upregulation of gpdh-1 and confer extreme resistance to hypertonicity. We tested the hypothesis that osr mutants broadly activate a gene expression program normally activated by osmotic stress in wild type animals using Affymterix microarray analysis of the hypertonic stress response in wild type animals and of constituitive gene expression changes in five osr mutants.
Project description:Adaptation of C. elegans to hypertonic environments involves the accumulation of the organic osmolyte glycerol via transcriptional upregulation of the glycerol biosynthestic enzyme gpdh-1. A number of mutants, termed osmotic stress resistant (osr) mutants, have been identified. osr mutants cause constitutive upregulation of gpdh-1 and confer extreme resistance to hypertonicity. We tested the hypothesis that osr mutants broadly activate a gene expression program normally activated by osmotic stress in wild type animals using Affymterix microarray analysis of the hypertonic stress response in wild type animals and of constituitive gene expression changes in five osr mutants. Experiment Overall Design: Young adult C. elegans were exposed to hypertonic growth plates for varying times prior to RNA extraction and hybridization on Affymetrix microarrays. Since we wished to separate direct response from secondary responses to osmotic stress, we collected worms following short term exposures to hypertonic conditions (15 minutes and 1 hour) and after long term exposure to hypertonic conditions (6 hours or a full generation of growth under hypertonic conditions). We also collected young adults from the osr mutants osm-7, osm-8, osm-11, dpy-9, and dpy-10 for microarray analysis. These mutants were grown under isotonic conditions to determine whether that constitutively activate genes normally regulated by hypertonic stress in wild type animals.
Project description:Fungal group III histidine kinases are the molecular targets of some classes of fungicides. In contrast to the yeast Saccharomyces cerevisiae, the fungal pathogen Candida albicans possesses a group III histidine kinase, CaNik1p, also called Cos1p. To investigate the function of CaNIK1, the gene was expressed in S. cerevisiae. The transformants became susceptible to antifungal compounds to which the wild-type strain is resistant. The susceptibility was related to the activation of the MAP kinase Hog1p of the osmotic stress response pathway. Gene expression analysis revealed a strong overlap of the responses to osmotic stress and to fludioxonil at early time points. While the response to fludioxonil persisted, the response to osmotic stress was diminished with time. S. cerevisiae expressing Candida albicans Nik1p were treated with 10 µg/ml fludioxonil. As a comparison, another culture of S. cerevisiae expressing Candida albicans Nik1p was treated with 1 M sorbitol to induce osmotic stress response. One culture remained untreated as a control. From all cultures, samples were taken after a duration of 15, 30 and 60 min.
Project description:Candida albicans is an important fungal pathogen in humans. Several virulence factors of C. albicans have been reported, including a morphological transition from yeast to filamentous forms (hyphae and pseudohyphae). Mss11 is a transcriptional activator required for hyphal formation. To reveal the potential target genes of Mss11, DNA microarray analysis was performed to compare wild type and mss11-deleted mutant.