Translation of poly(A) tails leads to precise mRNA cleavage and widespread ribosome rescue
Ontology highlight
ABSTRACT: Translation of poly(A) tails leads to mRNA cleavage but the mechanism and global pervasiveness of this “nonstop/no-go” decay process is not understood. Here we performed ribosome profiling of short 15-18 nt mRNA footprints to identify ribosomes stalled at 3’ ends of mRNA decay intermediates. We found mRNA cleavage extending hundreds of nucleotides upstream of ribosome stalling in poly(A) and predominantly in one reading frame. These observations suggest that cleavage is closely associated with the ribosome. Surprisingly, ribosomes appeared to stall when as few as 3 consecutive ORF-internal lysine codons were positioned in the A, P, and E sites though significant mRNA degradation was not observed. Endonucleolytic cleavage was widespread, however, at sites of premature polyadenylation and rescue of the ribosomes stalled at these sites was dependent on Dom34. These results suggest this process may be critical when changes in polyadenylation occur during development, tumorigenesis, or when translation termination/recycling is impaired.
ORGANISM(S): Saccharomyces cerevisiae
PROVIDER: GSE85944 | GEO | 2017/01/22
SECONDARY ACCESSION(S): PRJNA339793
REPOSITORIES: GEO
ACCESS DATA