Microenvironment-dependent proliferation and mitochondrial priming loss in mantle cell lymphoma is overcome by anti-CD20
Ontology highlight
ABSTRACT: Mantle cell lymphoma (MCL) accumulates in lymphoid organs but disseminates early on in extranodal tissues. Although proliferation remains located in lymphoid organs only, suggesting a major role of the tumor ecosystem, few studies have assessed MCL microenvironment. We therefore cocultured primary circulating MCL cells from 21 patients several weeks ex vivo with stromal or lymphoid-like (CD40L) cells to determine which interactions could support proliferation of MCL cells. We showed that coculture with lymphoid-like cells, but not stromal cells, induced cell-cycle progression, which was amplified by MCL-specific cytokines (IGF-1, BAFF, IL-6, IL-10). Of interest, we showed that our model recapitulated the MCL in situ molecular signatures i.e., proliferation, NFkB and survival signatures. We further demonstrated that proliferating MCL harbored an imbalance in Bcl-2 family expression leading to a consequent loss of mitochondrial priming. Interestingly, this loss of priming was overcome by the Type II anti-CD20 antibody obinutuzumab, which counteracted Bcl-xL induction through NFkB inhibition. Finally, we showed that the mitochondrial priming directly correlated with the sensitivity toward venetoclax and alkylating drugs. By identifying the microenvironment as the major support for proliferation and drug resistance in MCL, our results highlight a selective approach to target the lymphoma niche.
ORGANISM(S): Homo sapiens
PROVIDER: GSE86322 | GEO | 2017/01/02
SECONDARY ACCESSION(S): PRJNA341450
REPOSITORIES: GEO
ACCESS DATA