Transcriptomics

Dataset Information

0

LLQR E. coli ATCC 25922 vs wild-type E. coli ATCC 25922


ABSTRACT: Global response to ciprofloxacin in low level quinolone resistant Escherichia coli: a shorter path to survival. Background: Bactericidal activity of quinolones in bacteria has been related to a combination of DNA fragmentation, ROS production and programmed dead cell systems. Subjacent molecular systems responsible for reduction of bactericidal effect in low-level quinolone resistance (LLQR) phenotypes remain to be clarified. To answer this question and to define new possible antimicrobial targets, the transcriptomic profile in isogenic Escherichia coli harbouring quinolone resistance mechanisms in the presence of ciprofloxacin was evaluated. Materials and methods: E. coli 25922 was used as background strain. Four LLQR isogenic strains were tested for transcriptomic assays: ATCC 25922 (wild-type), EC14 (coding for QnrS1), EC19 (marR deletion and coding for QnrS1) and EC24 (Ser83Leu substitution in GyrA and coding for QnrS1). Cells in exponential phase (DO600=0.4) were exposed to 1 mg/L of ciprofloxacin (breakpoint for reduced susceptibility according to CLSI) during 1 hour and, further, RNA was purified. Gene expression analysis was performed using AGILENT technology. Data obtained for each strain were always normalized to the wild-type E. coli ATCC 25922. Specific ROS modulation targets were validated by genetic and biochemical approach. Results: A radical differential response to ciprofloxacin in LLQR strains, either up or downregulation, was observed (proportional to the MIC values). Multiple genes implicated in ROS production (related to TCA cycle, aerobic respiration or detoxification systems) were upregulated (sdhC up to 63.5-folds) in LLQR mutants. SOS system components were downregulated (recA up to 30.7-folds). yihE, coding for a protective kinase of programmed cell death, was also upregulated (up to 5.2-folds). SdhC inhibition sensitized LLQR phenotypes (up to Log=2.3 after 24 hours). Conclusions: At clinical relevant concentration of ciprofloxacin, the pattern of genes expression of critical systems for bacterial survival and mutant development were significantly modified in LLQR phenotypes. This approach allowed validating ROS modulation as an interesting target in terms of bacterial sensitization.

ORGANISM(S): Escherichia coli O157:H7 str. EDL933 Escherichia coli O157:H7 str. Sakai Escherichia coli CFT073 Escherichia coli ATCC 25922 Escherichia coli str. K-12 substr. MG1655

PROVIDER: GSE86341 | GEO | 2017/01/01

REPOSITORIES: GEO

Similar Datasets

2020-06-16 | GSE152445 | GEO
2013-10-20 | E-MTAB-1985 | biostudies-arrayexpress
2018-01-29 | GSE93896 | GEO
2016-11-04 | GSE89507 | GEO
2012-09-07 | GSE25413 | GEO
2017-02-04 | GSE94507 | GEO
2023-02-05 | GSE224562 | GEO
2021-08-05 | GSE159494 | GEO
2012-09-07 | E-GEOD-25413 | biostudies-arrayexpress
| PRJEB40547 | ENA