The evolutionary capacitor HSP90 buffers the regulatory effects of mammalian endogenous retroviruses.
Ontology highlight
ABSTRACT: The molecular chaperone heat shock protein 90 (HSP90) is thought to buffer genetic variation uncoupling phenotypic outcome from individual genotypes. HSP90 thus acts as an evolutionary capacitor by facilitating an accumulation of natural genetic variation. The molecular mechanism underlying the buffering ability is unclear, and HSP90-contingent genetic variation maps both to coding and non-coding parts of the genome. Our genome-wide data indicate that a compromised chaperoning activity of HSP90 causes derepression of endogenous retroviruses (ERVs) in mouse somatic cells. This results in an upregulation of host genes located in the neighborhood of pre-existing ERVs insertion sites. We provide genetic and biochemical evidence that HSP90 cooperates with KAP1/ SETDB1 histone methyltranferase pathway to repress ERVs. Individual mouse strains have unique integration sites of ERVs in their genomes. Consequently distinct genes are responsive to HSP90 inhibitor in different mouse strains depending on the position of the genes vis-à-vis strain-specific ERV insertion sites. Since ERVs have been exapted to drive novel transcriptional networks during mammalian evolution, HSP90 may have acted as a capacitor by buffering variation caused by ERV in non-coding regions of the genome. Our studies provide the first molecular framework by which HSP90 can mitigate genetic variation in gene-regulatory regions affecting gene expression and phenotypes.
Project description:TRIM28 (KAP1 - KRAB-associated protein 1) is critical for the silencing of endogenous retroviruses (ERVs) in embryonic stem (ES) cells. Here, we reveal that an essential impact of this process is the protection of cellular gene expression in early embryos from perturbation by cis-acting activators contained within these genetic invaders. In TRIM28-depleted ES cells, repressive chromatin marks at ERVs are replaced by histone modifications typical of active enhancers, stimulating transcription of nearby cellular genes, notably those harboring bivalent promoters. Correspondingly, ERV-derived sequences can repress or enhance expression from an adjacent promoter in transgenic embryos depending on their TRIM28-sensitivity in ES cells. TRIM28-mediated control of ERVs is therefore crucial not just to prevent retrotransposition, but more broadly to safeguard the transcriptional dynamics of early embryos. Analyses of transcriptional profiles and chromatin state in TRIM28 WT and KO cells
Project description:Genome stability relies on epigenetic mechanisms that enforce repression of endogenous retroviruses (ERVs). Current evidence suggests that distinct chromatin-based mechanisms repress ERVs in cells of embryonic origin (histone methylation-dominant) versus more differentiated cells (DNA methylation-dominant). However, the latter aspect of this model has not been tested. Remarkably, and in contrast to the prevailing model, we find that repressive histone methylation catalyzed by the enzyme SETDB1 is critical for suppression of specific ERV families and exogenous retroviruses in committed B-lineage cells from adult mice. The profile of ERV activation in SETDB1-deficient B cells is distinct from that observed in corresponding embryonic tissues, despite the loss of repressive chromatin modifications at all ERVs. We provide evidence that, upon loss of SETDB1, ERVs are activated in a lineage-specific manner depending on the set of transcription factors available to target proviral regulatory elements. These findings have important implications for genome stability in somatic cells, as well as the interface between epigenetic repression and viral latency. Expression profiling and bisulfite PCR sequencing in Setdb1 C/C and Setdb1 D/D pro-B cells
Project description:Endogenous retroviruses (ERVs) were usually silenced by various histone modifications on histone H3 variants and respective histone chaperones in embryonic stem cells (ESCs). However, it is still unknown whether chaperones of other histones could repress ERVs. Here, we show that H2A/H2B histone chaperone FACT plays a critical role in silencing ERVs and ERV-derived cryptic promoters in ESCs. Loss of FACT component Ssrp1 activated MERVL whereas the re-introduction of Ssrp1 rescued the phenotype. Additionally, Ssrp1 interacted with MERVL and suppressed cryptic transcription of MERVL-fused genes. Remarkably, Ssrp1 interacted with and recruited H2B deubiquitinase Usp7 to Ssrp1 target genes. Suppression of Usp7 caused similar phenotypes as loss of Ssrp1. Furthermore, Usp7 acted by deubiquitinating H2Bub and thereby repressed the expression of MERVL-fused genes. Taken together, our study uncovers a unique mechanism by which FACT complex silences ERVs and ERV-derived cryptic promoters in ESCs.
Project description:The essential stress-responsive chaperone Hsp90 impacts development and adaptation from microbes to humans. Yet despite evidence of its role in evolution, pathogenesis, and oncogenic transformation, the molecular mechanisms by which Hsp90 alters the consequences of mutations remain vigorously debated. Here we exploit the power of nucleotide-resolution genetic mapping in Saccharomyces cerevisiae to uncover more than 1,000 natural variant-to-phenotype associations governed by this molecular chaperone. Strikingly, Hsp90 more frequently modified the phenotypic effects of cis-regulatory variation than variants that altered protein sequence. Moreover, these interactions made the largest contribution to Hsp90-dependent heredity. Nearly all interacting variants—both regulatory and protein-coding—fell within clients of Hsp90 or targets of its direct binding partners. Hsp90 activity affected mutations in evolutionarily young genes, segmental deletions, and heterozygotes, highlighting its influence on variation central to evolutionary novelty. Reconciling the diverse epistatic effects of this chaperone, synthetic transcriptional regulation and reconstructions of natural alleles by genome editing revealed a central role for Hsp90 in regulating the fundamental relationship between activity and phenotype. Our findings establish that non-coding variation is a core driver of Hsp90’s influence on heredity, offering a mechanistic explanation for the chaperone’s strong effects on evolution and development across species.
Project description:Endogenous retroviruses (ERVs) are transposable elements that cause host genome instability and usually play deleterious roles such as tumorigenesis. Recent advances also suggest that this 'enemy within' may encode viral mimic to induce antiviral immune responses through viral sensors. Here, through whole genome RNA-seq we discovered a full-length ERV-derived long non-coding RNA (lncRNA), designated lnc-EPAV (ERV-derived lncRNA positively regulates antiviral responses), as a positive regulator of NF-κB signaling. Lnc-EPAV expression was rapidly up-regulated by viral RNA mimic or RNA viruses to facilitate the expression of RELA, an NF-κB subunit that plays a critical role in antiviral responses. In turn, RELA promoted the transcription of lnc-EPAV to form a positive feedback loop. Transcriptome analysis of lnc-EPAV-silenced macrophages, combined with gain- and loss-of-function experiments, showed that lnc-EPAV was critical for induction of type I interferon (IFN) and inflammatory cytokine expression by RNA viruses. Consistently, lnc-EPAV-deficient mice exhibited reduced expression of type I IFNs, and consequently increased viral loads and mortality following lethal RNA virus infection. Mechanistically, lnc-EPAV promoted expression of RELA by competitively binding to and displacing SFPQ, a transcriptional repressor of RELA. The binding between ERV-derived RNAs and SFPQ also existed in human cells. Altogether, our work demonstrates an alternative mechanism by which ERVs regulate antiviral immune responses.
Project description:Ten-eleven translocation (TET) proteins play key roles in regulating the methylation status of DNA through oxidizing methylcytosines (5mC), generating 5-hydroxymethylcytosines (5hmC) that can both serve as stable epigenetic marks and participate in active demethylation. Here we show that TET2 is recruited by the RNA-binding protein Paraspeckle component 1 (PSPC1) through transcriptionally active loci, including endogenous retroviruses (ERVs) whose long terminal repeats (LTRs) have been co-opted by mammalian genomes as stage- and tissue-specific transcriptional regulatory modules. We find that PSPC1 and TET2 contribute to ERV and ERV-associated gene regulation by both transcriptional repression via histone deacetylases and post-transcriptional destabilization of ERV RNAs through 5hmC modification. Our findings provide evidence for a functional role of transcriptionally active ERVs as specific docking sites for RNA epigenetic modulation and gene regulation.
Project description:Ten-eleven translocation (TET) proteins play key roles in regulating the methylation status of DNA through oxidizing methylcytosines (5mC), generating 5-hydroxymethylcytosines (5hmC) that can both serve as stable epigenetic marks and participate in active demethylation. Here we show that TET2 is recruited by the RNA-binding protein Paraspeckle component 1 (PSPC1) through transcriptionally active loci, including endogenous retroviruses (ERVs) whose long terminal repeats (LTRs) have been co-opted by mammalian genomes as stage- and tissue-specific transcriptional regulatory modules. We find that PSPC1 and TET2 contribute to ERV and ERV-associated gene regulation by both transcriptional repression via histone deacetylases and post-transcriptional destabilization of ERV RNAs through 5hmC modification. Our findings provide evidence for a functional role of transcriptionally active ERVs as specific docking sites for RNA epigenetic modulation and gene regulation.
Project description:Heterochromatin plays essential roles in repressing retrotransposons, e.g. endogenous retroviruses (ERVs) during mammalian development, but the contribution of retrotransposition to lethality observed in embryonic cells deficient for heterochromatin-mediated ERV repression is poorly understood. Here we report that selective degradation of the TRIM28 heterochromatin adapter protein leads to reduced association of transcriptional condensates with loci encoding super-enhancer -driven pluripotency genes in embryonic stem cells, a collapse of the pluripotency transcriptional circuit, and a pre-lethal restriction of pluripotent lineages in mouse embryos. De-repressed ERVs recruit transcriptional condensates in the absence of TRIM28, and ERV RNA facilitates condensation of RNA Polymerase II in vitro. We propose that retrotransposons contribute to the genomic distribution of nuclear condensates, and that RNA species may facilitate “hijacking” of transcriptional condensates in various developmental and disease contexts.
Project description:Endogenous retroviruses (ERVs) make up a large fraction of mammalian genome and are thought to contribute to human disease, including brain disorders. Aberrant activation of ERVs constitute a potential trigger for neuroinflammation, but mechanistic insight into this phenomenon remains unclear. Using CRISPR/Cas9-based gene disruption of the epigenetic co-repressor protein Trim28, we found a dynamic H3K9me3-dependent regulation of ERVs in proliferating neural progenitor cells (NPCs), but not in adult neurons. In vivo disruption of Trim28 in cortical NPCs during brain development resulted in viable offspring expressing high levels of ERVs in excitatory neurons in the adult brain of mice. Neuronal ERV expression was linked to inflammation, including activated microglia, and aggregates of ERV-derived proteins. This study demonstrates that brain development is a critical period for the silencing of ERVs and provides causal in vivo evidence demonstrating that transcriptional activation of ERV in neurons results in neuroinflammation.
Project description:The genome of vertebrates contains endogenous retroviruses (ERVs) that have resulted from ancestral infections by exogenous retroviruses. ERVs are germline encoded, transmitted in a Mendelian fashion and account for about 8% of the human and 9.9% of the murine genome, respectively1, 2. By spontaneous activation and reintegration ERVs may cause insertional mutagenesis and thus participate in the process of malignant transformation or progression of tumor growth3, 4. However, if the innate immune system is able to recognize and control ERVs has not yet been elucidated. Here we report that, in vitro, nucleic-acid sensing TLRs on dendritic cells are activated by retroviral RNA and DNA from infected cells in vitro. Infection of TLR competent wild type mice with murine leukemia virus (MuLV)-like ERV isolates results in non-canonical gene upregulation, independent of type I IFN. In vivo, TLR3, -7 and -9 triple deficient mice (TLR379-/-) and mice with non functional TLR3, 7 and 9 signaling due to a mutation in UNC93B develop spontaneous ERV-induced viremia. More importantly, in TLR379-/- mice ERV-induced viremia correlates with acute T cell lymphoblastic leukemia (T-ALL). Multiple independent TLR379-/- T cell leukemia lines produce infectious MuLV of endogenous origin. These cell lines display de novo retroviral integration into the Nup214 or Notch1 gene locus leading to gene dysregulation that is reminiscent of aberrant Nup214 and Notch1 expression in human T-ALLs5. Overall, our results demonstrate that in addition to their role in innate immune defense against exogenous pathogens, TLR3,-7, and -9 may be essential for the control of endogenous retroviral mediated T-cell lymphomagenesis. The data covers two data sets. The data set covers two comparisons of the expression profile from old and young TLR379-/- knockout. Spleen was taken from and old wild type (C57BL/6 background) to compare it against an old TLR379-/- knockout and also from an young wild type (C57BL/6 background) to compare it against a young TLR379-/- knockout. The second experiment includes three replicates of the wild type, the Baki-1MuLV infected C57BL/6, and the Sendai infected C57BL/6.