Expression data from human breast cancer cell MCF-7 and human gastric cancer cell SGC-7901
Ontology highlight
ABSTRACT: Piper longum L. is a well-known traditional antihyperlipidemic medicine,and it has ability to inhibit proliferation of cancer cells,potassium piperate (GBK) maybe have the same effect. We used microarrays to detail the global programme of gene expression underlying cellularisation and identified distinct classes of up-regulated and down-regulated genes during this process.
Project description:miR-375 plays an irreplaceable role in regulation of neoplastic progression in gastric cancer. In order to study the mechanism by which miR-375 inhibits the stemness of gastric cancer cell lines, we need to explore the genetic program controlled by miR-375. We used microarrays to detail the global program of gene expression underlying miR-375 up-regulation and identified distinct classes of regulated genes during this process.
Project description:NUAK1 was highly expressed in tumors, and promoted their invasion and metastasis.. The study is to explore the downstream of NUAK1 in human gastric cancer SGC-7901 cells
Project description:Gastric cancer is the second major cause of death associated with cancer and ranks among the top four cancers diagnosed worldwide. Previous findings identified the association of transmembrane proteins (TMEMs) with tumorigenesis of various types of cancer, including breast, liver and kidney cancer. However, the expression and the biological function of TMEMs, especially TMEM119, and its possible molecular mechanism in gastric cancer remain less understood. CCK-8 and flow cytometric analysis was employed to examine the viability and apoptosis of gastric adenocarcinoma SGC-7901 and AGS cells, gastric carcinoma MKN45 cells, as well as gastric epithelial cell lines GES-1 after transfection with TMEM119-siRNA (siTMEM119), respectively. Quantitative PCR, western blot analysis and immunohistochemistry was performed to detect the expression levels of TMEM119, Bax, Bcl-2 and caspase-3. The results showed that, TMEM119 was elevated with the highest expression detected in SGC-7901 cells compared to AGS cells, MKN45 cells, as well as GES-1. TMEM119 silencing in the gastric cancer cell line, SGC-7901, significantly inhibited cell viability and induced apoptosis. The downregulation of TMEM119 exhibited reduced levels of Bcl-2 and higher levels of Bax and caspase-3 in SGC-7901 cells. These results suggest that TMEM119 is useful in the treatment of gastric cancer.
Project description:Carnosine, a naturally occurring dipeptide, has been recently demonstrated to possess anti-tumor activity. However, its underlying mechanism is unclear. In this study, we investigated the effect and mechanism of carnosine on the cell viability and proliferation of the cultured human gastric cancer SGC-7901 cells. Carnosine treatment did not induce cell apoptosis or necrosis, but reduced the proliferative capacity of SGC-7901 cells. Seahorse analysis showed SGC-7901 cells cultured with pyruvate have active mitochondria, and depend on mitochondrial oxidative phosphorylation more than glycolysis pathway for generation of ATP. Carnosine markedly decreased the absolute value of mitochondrial ATP-linked respiration, and reduced the maximal oxygen consumption and spare respiratory capacity, which may reduce mitochondrial function correlated with proliferative potential. Simultaneously, carnosine also reduced the extracellular acidification rate and glycolysis of SGC-7901 cells. Our results suggested that carnosine is a potential regulator of energy metabolism of SGC-7901 cells both in the anaerobic and aerobic pathways, and provided a clue for preclinical and clinical evaluation of carnosine for gastric cancer therapy.
Project description:Silkworm pupae (Bombyx mori) are a high-protein nutrition source consumed in China since more than 2 thousand years ago. Recent studies revealed that silkworm pupae have therapeutic benefits to treat many diseases. However, the ability of the compounds of silkworm pupae to inhibit tumourigenesis remains to be elucidated. Here, we separated the protein of silkworm pupae and performed alcalase hydrolysis. Silkworm pupa protein hydrolysate (SPPH) can specifically inhibit the proliferation and provoke abnormal morphologic features of human gastric cancer cells SGC-7901 in a dose- and time-dependent manner. Moreover, flow cytometry indicated that SPPH can induce apoptosis and arrest the cell-cycle in S phase. Furthermore, SPPH was shown to provoke accumulation of reactive oxygen species (ROS) and depolarization of mitochondrial membrane potential. Western blotting analysis indicated that SPPH inhibited Bcl-2 expression and promoted Bax expression, and subsequently induced apoptosis-inducing factor and cytochrome C release, which led to the activation of initiator caspase-9 and executioner caspase-3, cleavage of poly (ADP-ribose) polymerase (PARP), eventually caused cell apoptosis. Moreover, SPPH-induced S-phase arrest was mediated by up-regulating the expression of E2F1 and down-regulating those of cyclin E, CDK2 and cyclin A2. Transcriptome sequencing and gene set enrichment analysis (GSEA) also revealed that SPPH treatment could affect gene expression and pathway regulation related to tumourigenesis, apoptosis and cell cycle. In summary, our results suggest that SPPH could specifically suppress cell growth of SGC-7901 through an intrinsic apoptotic pathway, ROS accumulation and cell cycle arrest, and silkworm pupae have a potential to become a source of anticancer agents in the future.
Project description:Gastric cancer, one of the most common malignancies worldwide, typically has a poor prognosis and poor survival rate. Previous studies have investigated the chemopreventive effect of celecoxib. In the present study, the SGC-7901 human gastric cancer cell line was utilized to examine the chemopreventive mechanisms of celecoxib. The inhibition of cell proliferation was determined using MTT assay, cell apoptosis was monitored by terminal deoxynucleotidyl transferase-mediated dUTP nick end‑labeling (TUNEL) and flow cytometry, and cell ultrastructural changes were assessed via transmission electron microscopy. The mRNA expression of Akt, caspase-8 and -9 was examined using quantitative reverse-transcription-polymerase chain reaction (qRT-PCR) and p-Akt, procaspase-8 and -9 were analyzed via western blotting. The results showed that celecoxib inhibited the proliferation of SGC-7901 cells in a time- and dose-dependent manner. Additionally, celecoxib induced apoptosis as substantiated by typical apoptotic bodies, autophagosomes and an increased apoptotic rate. It was found that following celecoxib treatment, Akt mRNA expression was not significantly altered, and that p-Akt protein levels decreased in a time- and dose‑dependent manner. Additionally, caspase-8 and -9 mRNA expression was significantly increased, while procaspase-8 and -9 protein expression decreased relative to the time- and dose-dependent effects. These results demonstrated that celecoxib induced apoptosis and autophagy of gastric cancer cells in vitro through the PI3K/Akt signaling pathway. Moreover, our findings suggested that celecoxib induces apoptosis in gastric cancer cells through the mitochondrial and death receptor pathways, providing additional understanding regarding the chemopreventive behaviors of celecoxib and its uses in cancer therapy.
Project description:HPSE plays important roles in gastric cancer cell proliferation, apoptosis and metastasis.The aim of this study is to explore molecular mechanism underling roles of HPSE in gastric cancer cell proliferation, survival, migration and metastasis.
Project description:HPSE plays important roles in gastric cancer cell proliferation, apoptosis and metastasis.The aim of this study is to explore molecular mechanism underling roles of HPSE in gastric cancer cell proliferation, survival, migration and metastasis. SGC-7901 gastric cancer cells were transfected with HPSE siRNA (10nM) or scramble control siRNA, RNA were extracted 24hours after transfectioin and hybridized to Affymetrix microarrays. 3 biological repeats were used for each condition.
Project description:SLC7A5, who is also named LAT-1, has been validated as a promoter regulated by miRNA-126 in our previous research for gastric cancer cells. However, the mechanisms driving SLC7A5 to affect the bio-function of gastric cancer cells are unclear, remaining us lots of to elucidate. The aim of this study is to investigate the regulating effect of CRKL, one of the critical genes involving with gastric cancer progression, on SLC7A5 expression. By studying the gastric cancer cell lines and clinical pathological specimens, we found that the expression of SLC7A5 was significantly correlated to CRKL. By depleting CRKL in gastric cancer SGC-7901 cells, the SLC7A5 expression was impaired, and the invasion and migration of SGC-7901 cells were suppressed. Ectopic expression of SLC7A5 could drastically rescue the phenotypes induced by CRKL depletion in this study. Accordingly, we conclude that SLC7A5 functions as a promoter in gastric cancer metastasis, and CRKL could be one of its regulators modulating the expression of SLC7A5 and consequentially affect the metastatic feature of SGC-7901 cells. The findings in this study indicate a regulation relationship between CRKL and SLC7A5, and provide useful evidence for gastric cancer therapeutic strategies.